Three-layer Iterative Solution Procedure Ill-posed Equations of the First Kind in a Hilbert Space

Main Article Content

Oleg Matysik
Ivan Kovalchuk

Abstract

To solve linear operator equations of the first kind with a positive bounded self-adjoint operator in a Hilbert space an explicit three-layer iterative procedure is proposed. The convergence of the iterative method is studied in the case of a priori and a posteriori choice of the regularization parameter for the exact and approximate right-hand sides of the operator equation in the original norm of the Hilbert space. The convergence of the iteration method has been proven in the semi-norm of a Hilbert space. The proposed method solves the numerical model problem. The results obtained can be used in theoretical research in solving linear operator equations, as well as in solving applied ill-posed problems.

Article Details

How to Cite
[1]
Matysik, O. and Kovalchuk, I. 2025. Three-layer Iterative Solution Procedure Ill-posed Equations of the First Kind in a Hilbert Space. Vesnik of Brest University. Series 4. Physics. Mathematics. 1 (Jul. 2025), 56–72. DOI:https://doi.org/10.63874/2218-0303-2025-1-56-72.
Section
MATHEMATICS

References

1. Hadamard, J. Le probleme de Cauchy et les equations aux derivees partielles lineaires hyperboliques / J. Hadamard. – Paris : Hermann, 1932. 2. Landweber, L. An iteration formula for Fredholm integral equations of the first kind / L. Landweber // Am. J. Math. – 1951. – Vol. 73. – P. 615–624.

3. Вайникко, Г. М. Итерационные процедуры в некорректных задачах / Г. М. Вайникко, А. Ю. Веретенников. – М. : Наука, 1986. – 178 с.

4. Самарский, А. А. Численные методы решения обратных задач математической физики / А. А. Самарский, П. Н. Вабищевич. – М. : Едиториал УРСС, 2004. – 480 с.

5. Савчук, В. Ф. Регуляризация операторных уравнений в гильбертовом пространстве / В. Ф. Савчук, О. В. Матысик. – Брест : Брест. гос. ун-т, 2008. – 196 с.

6. Матысик, О. В. Явные и неявные итерационные процедуры решения некорректно поставленных задач / О. В. Матысик. – Брест : Брест. гос. ун-т, 2014. – 213 с.

7. Matysik, O. V. Implicit iteration method of solving linear equations with approximating right-hand member and approximately specified operator / O. V. Matysik // J. Comp. Appl. Math. – 2014. – Nr 2 (116). – P. 89–95.

8. Матысик, О. В. Итерационная регуляризация некорректных задач / О. В. Матысик. – Saarbrücken : LAP LAMBERT Acad. Publ., 2015. – 188 с.

9. Matysik, O. V. M. A. Krasnosel’skii theorem and iterative methods for solving ill-posed linear problems with a self-adjoint operator / O. V. Matysik, P. P. Zabreiko // Comput. Methods Appl. Math. (De Gruyter). – 2015. – Vol. 15, nr 3. – P. 373–389.

10. Matysik, O. V. Regularization of ill-posed problems in Hilbert space by means of the implicit iteration process / O. V. Matysik // J. Comp. Appl. Math. – 2015. – Nr 2 (119). – P. 33–41.

11. Matysik, O. V. Simple-iteration method with alternating step size for solving operator equations in Hilbert space / O. V. Matysik, Marc M. Van Hulle // J. Comp. & Appl. Math. (Elsevier). – 2016. – Nr 300. – P. 290–299.

12. Matysik, O. V. Alternating step size method for solving ill-posed linear operator equations in energetic space / O. V. Matysik, Marc M. Van Hulle // J. Comp. & Appl. Math. (Elsevier). – 2022. – Nr 416. – P. 1–12.