ТРЕХСЛОЙНАЯ ИТЕРАЦИОННАЯ ПРОЦЕДУРА РЕШЕНИЯ НЕКОРРЕКТНЫХ УРАВНЕНИЙ ПЕРВОГО РОДА В ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ
##plugins.themes.bootstrap3.article.main##
Анатацыя
Для решения линейных операторных уравнений первого рода с положительным ограниченным самосопряженным оператором в гильбертовом пространстве предлагается явная трехслойная итерационная процедура. Исследована сходимость итерационного метода в случае априорного и апостериорного выбора параметра регуляризации при точной и приближенной правых частях операторного уравнения в исходной норме гильбертова пространства. Доказана сходимость метода итераций в полунорме гильбертова пространства. Предложенным методом решена численная модельная задача. Полученные результаты могут быть использованы в теоретических исследованиях при решении линейных операторных уравнений, а также при решении прикладных некорректных задач.
##plugins.themes.bootstrap3.article.details##
Бібліяграфічныя спасылкі
1. Hadamard, J. Le probleme de Cauchy et les equations aux derivees partielles lineaires hyperboliques / J. Hadamard. – Paris : Hermann, 1932. 2. Landweber, L. An iteration formula for Fredholm integral equations of the first kind / L. Landweber // Am. J. Math. – 1951. – Vol. 73. – P. 615–624.
3. Вайникко, Г. М. Итерационные процедуры в некорректных задачах / Г. М. Вайникко, А. Ю. Веретенников. – М. : Наука, 1986. – 178 с.
4. Самарский, А. А. Численные методы решения обратных задач математической физики / А. А. Самарский, П. Н. Вабищевич. – М. : Едиториал УРСС, 2004. – 480 с.
5. Савчук, В. Ф. Регуляризация операторных уравнений в гильбертовом пространстве / В. Ф. Савчук, О. В. Матысик. – Брест : Брест. гос. ун-т, 2008. – 196 с.
6. Матысик, О. В. Явные и неявные итерационные процедуры решения некорректно поставленных задач / О. В. Матысик. – Брест : Брест. гос. ун-т, 2014. – 213 с.
7. Matysik, O. V. Implicit iteration method of solving linear equations with approximating right-hand member and approximately specified operator / O. V. Matysik // J. Comp. Appl. Math. – 2014. – Nr 2 (116). – P. 89–95.
8. Матысик, О. В. Итерационная регуляризация некорректных задач / О. В. Матысик. – Saarbrücken : LAP LAMBERT Acad. Publ., 2015. – 188 с.
9. Matysik, O. V. M. A. Krasnosel’skii theorem and iterative methods for solving ill-posed linear problems with a self-adjoint operator / O. V. Matysik, P. P. Zabreiko // Comput. Methods Appl. Math. (De Gruyter). – 2015. – Vol. 15, nr 3. – P. 373–389.
10. Matysik, O. V. Regularization of ill-posed problems in Hilbert space by means of the implicit iteration process / O. V. Matysik // J. Comp. Appl. Math. – 2015. – Nr 2 (119). – P. 33–41.
11. Matysik, O. V. Simple-iteration method with alternating step size for solving operator equations in Hilbert space / O. V. Matysik, Marc M. Van Hulle // J. Comp. & Appl. Math. (Elsevier). – 2016. – Nr 300. – P. 290–299.
12. Matysik, O. V. Alternating step size method for solving ill-posed linear operator equations in energetic space / O. V. Matysik, Marc M. Van Hulle // J. Comp. & Appl. Math. (Elsevier). – 2022. – Nr 416. – P. 1–12.