КОНЕЧНЫЕ ГРУППЫ C ЗАДАННЫМИ СИСТЕМАМИ \(tcc_n\)-ПОДГРУПП
Main Article Content
Abstract
The subgroups \(A\) and \(B\) are said to be \(\text{cc}\)-permutable, if \(A\) permutes with \(B^g\) for some \(g \in \langle A, B \rangle\). A subgroup \(A\) of a finite group \(G\) is called \(\text{tcc}_n\)-subgroup of \(G\), if there exists a subgroup \(T\) of \(G\) such that \(G = AT\) and every normal subgroup of \(A\) is \(\text{cc}\)-permutable with all subgroups of \(T\). In this paper we proved the supersolubility of the group \(G\) factorized by supersoluble \(\text{tcc}_n\)-subgroups \(A\) and \(B\). In addition, we obtained the supersolubility of a group whose maximal, Sylow, maximal of Sylow, minimal, 2-maximal subgroups are \(\text{tcc}_n\)-subgroups.
Article Details
References
1. Монахов, В. С. Введение в теорию конечных групп и их классов / В. С. Монахов. – Минск : Выш. шк., 2006. – С. 207.
2. Huppert, B. Endliche Gruppen / B. Huppert. – Berlin : Springer-Verlag, 1967.
3. Guo, W. Conditionally Permutable Subgroups and Supersolubility of Finite Groups / W. Guo, K. P. Shum, A. N. Skiba // Southeast Asian Bull. Math. – 2005. – Vol. 29. – P. 493–510.
4. Trofimuk, A. A. On the supersolubility of a group with some tcc-subgroups / A. A. Trofimuk // Journal of Algebra and Its Applications. – 2021. – 2150020 (18 p.).
5. Asaad, M. On the supersolubility of finite groups / M. Asaad, A. Shaalan // Arch. Math. – 1989. – Vol. 53. – P. 318–326.
6. Carocca, A. p-supersolvability of factorized finite groups / A. Carocca // Hokkaido Math. J. – 1992. – Vol. 21. – P. 395–403.
7. Monakhov, V. S. Finite groups with subnormal non-cyclic subgroups / V. S. Monakhov, A. A. Trofimuk // Journal of Group Theory. – 2014. – Vol. 17, nr 5. – P. 889–895.
8. Guo, W. Groups with maximal subgroups of Sylow subgroups \(\sigma\)-permutable embedded / W. Guo, A. N. Skiba // J. Group Theory. – 2017. – Vol. 20. – P. 169–183.
9. Монахов, В. С. О сверхразрешимом корадикале произведения субнормальных сверхразрешимых подгрупп / В. С. Монахов, И. К. Чирик // Сибирский математический журнал. – 2017. – Т. 58, № 2. – C. 353–364.
10. Monakhov, V. S. On the supersolubility of a group with semisubnormal factors / V. S. Monakhov, A. A. Trofimuk // J. Group Theory. – 2020. – Vol. 23, nr 5. – P. 893–911.
11. Княгина, В. Н. Конечные группы с полунормальными подгруппами Шмидта / В. Н. Княгина, В. С. Монахов // Алгебра и логика. – 2007. – Т. 46, № 4. – C. 448–458.
12. Wielandt, H. Subnormalität in faktorisierten endlichen Gruppen / H. Wielandt // J. Algebra. – 1981. – Vol. 69. – P. 305–311.
13. Casolo, C. Acriterion for subnormality andWielandt complexes in finite groups / C. Casolo // J.Algebra. –1994. – Vol. 169. – P. 605–624.
14. Tyutyanov, V. N. Finite groups with biprimary Hall subgroups / V. N. Tyutyanov, V. N. Kniahina // J. Algebra. – 2015. – Vol. 443. – P. 430–440.
15. Doerk, K. Minimal nicht uberauflösbare, endliche gruppen / K. Doerk // Math. Z. – 1966. – Vol. 91. – P. 198–205.
16. Monakhov, V. S. On the supersolubility of a finite group with NS-supplemented subgroups / V. S. Monakhov, A. A. Trofimuk // Acta Math. Hung. – 2020. – Vol. 160, nr 1. – P. 161–167.