УДК 512.542

DOI 10.63874/2218-0303-2025-1-85-89

Александр Андреевич Юдов¹, Анастасия Александровна Давыдчик²

 1 канд. физ.-мат. наук, доц.

²учитель математики средней школы № 8 г. Бреста имени героя Беларуси В. Н. Карвата Alexander Yudov¹, Anastasiya Davydchik²

¹Candidate of Physical and Mathematical Sciences, Associate Professor 2 Mathematics Teacher of the Secondary School nr8 in Brest named after Hero of Belarus V. Karvat e-mail: ¹vudov.aleks@vandex.ru, ²nastva3425@mail.ru

Φ -ПРОСТРАНСТВА СИММЕТРИЧЕСКОЙ ГРУППЫ S_4 И ИХ СИММЕТРИИ

Изучаются конечные группы, находятся -пространства группы S_4 , вычисляются группы их симметрий, строится интерпретация ф-пространств в виде плоского графа на кубе или на пирамиде. Ключевые слова: группа, подгруппа, автоморфизм, симметрия, граф.

Φ -Spaces of the Symmetric Group S_4 and Their Symmetries

In this work finite groups are studied, φ -spaces of a group S_4 are found, their symmetry groups are calculated, an interpretation of spaces in the form of a flat graph on a cube or on a pyramid is constructed. **Key words:** group, subgroup, automorphism, symmetry, graph.

Введение

В данной работе продолжаются исследования, начатые в [1; 2], где для конечной группы было введено понятие симметрии и вычислены группы симметрий подгрупп симметрической группы S_4 четвертой степени. Используемая терминология соответствует [3], при этом симметрия группы X относительно элемента g определяется по правилу $X \to gX^{-1}g$.

В работе расширены вычисления групп симметрий подгрупп группы S_4 , а также продолжено изучение -пространств, построенных на основе группы S_4 в соответствии с подходом, предложенным в [1].

Основная часть

1. Рассмотрим $H_1 = \{\varepsilon, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)\}$ подгруппу восьмого порядка группы S_4 [2].

Вычислим группу симметрий подгруппы H_1 . Рассмотрим симметрию единичного элемента S_{ε} .

$$S_{\varepsilon}: \varepsilon \to \varepsilon \cdot \varepsilon^{-1} \cdot \varepsilon$$
, (12) $\to \varepsilon \cdot (12)^{-1} \cdot \varepsilon = \varepsilon (12)\varepsilon = (12)$, (34) $\to \varepsilon (34)\varepsilon = (34)$, (12)(34) $\to \varepsilon (12)(34)\varepsilon = (12)(34)$,

аналогично

$$(13)(24) \rightarrow (13)(24), (14)(23) \rightarrow (14)(23), (1324) \rightarrow (1423), (1423) \rightarrow (1324).$$

Обозначим элементы группы H_1 в соответствии с порядком следования номерами: 1,2,3,4.5,6,7,8.

Тогда симметрия S_{ε} запишется в виде постановки

$$S_{\varepsilon} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix},$$

которую запишем в виде цикла $S_{\varepsilon} = (78)$.

Аналогично, рассматривая остальные симметрии, получим:

$$S_{(12)} = (56), S_{(34)} = (56), S_{(12)(34)} = (78), S_{(13)(24)} = (23),$$

 $S_{(14)(23)} = (23), S_{(1324)} = (14), S_{(1423)} = (14).$

Таким образом, база симметрий группы H_1 есть множество

$$B_{H_1}^S = \{(14), (23), (56), (78)\}.$$

Найдем первую симметрическую производную для этой базы [1]:

	(14)	(23)	(56)	(78)
(14)	ε	(14)(23)	(14)(56)	(14)(78)
(23)	(23)(14)	3	(23)(56)	(23)(78)
(56)	(56)(14)	(56)(23)	3	(56)(78)
(78)	(78)(14)	(78)(23)	(78)(56)	ε

Таким образом, первая симметрическая производная вместе с базой есть множество

$$S_{H_1}^{/S} = \{\varepsilon, (14), (23), (56), (78), (14)(23), (14)(56), (14)(78), (23)(56), (23)(78), (56)(78)\}.$$

Найдем вторую симметрическую производную.

	ε	(14)	(23)	(56)	(78)
ε	ε	(14)	(23)	(56)	(78)
(14)	(14)	ε	(14)(23)	(14)(56)	(14)(78)
(23)	(23)	(23)(14)	ε	(23)(56)	(23)(78)
(56)	(56)	(56)(14)	(56)(23)	ε	(56)(78)
(78)	(78)	(78)(14)	(78)(23)	(78)(56)	3
(14)(23)	(14)(23)	(23)	(14)	(14)(23)(56)	(14)(23)(78)
(14)(56)	(14)(56)	(56)	(14)(56)(23)	(14)	(14)(56)(78)
(14)(78)	(14)(78)	(78)	(14)(23)(78)	(14)(56)(78)	(14)
(23)(56)	(23)(56)	(23)(56)(14)	(56)	(23)	(23)(56)(78)
(23)(78)	(23)(78)	(14)(23)(78)	(78)	(23)(56)(78)	(23)
(56)(78)	(56)(78)	(56)(78)(14)	(56)(78)(23)	(78)	(56)

	(14)(23)	(14)(56)	(14)(78)
ε	(14)(23)	(14)(56)	(14)(78)
(14)	(23)	(56)	(78)
(23)	(14)	(23)(14)(56)	(23)(14)(56)
(56)	(56)(14)(23)	(14)	(56)(14)(78)
(78)	(78)(14)(23)	(78)(14)(56)	(14)
(14)(23)	ε	(23)(56)	(23)(78)
(14)(56)	(56)(23)	ε	(56)(78)
(14)(78)	(78)(23)	(78)(56)	ε
(23)(56)	(14)(56)	(23)(14)	(14)(23)(56)(78)
(23)(78)	(78)(14)	(14)(23)(56)(78)	(14)(23)
(56)(78)	(14)(23)(56)(78)	(78)(14)	(14)(56)

	(23)(56)	(23)(78)	(56)(78)
ε	(23)(56)	(23)(78)	(56)(78)
(14)	(14)(23)(56)	(14)(23)(78)	(14)(56)(78)
(23)	(56)	(78)	(23)(56)(78)
(56)	(23)	(56)(23)(78)	(78)
(78)	(78)(23)(56)	(23)	(56)
(14)(23)	(14)(56)	(14)(78)	(14)(23)(56)(78)
(14)(56)	(14)(23)	(14)(23)(56)(78)	(14)(78)
(14)(78)	(14)(23)(56)(78)	(14)(23)	(14)(56)
(23)(56)	ε	(56)(78)	(23)(78)
(23)(78)	(78)(56)	3	(23)(56)
(56)(78)	(78)(23)	(56)(23)	ε

Таким образом, вторая симметрическая производная представляет собой множество, состоящее из единицы элементов базы и всевозможных совокупностей произведений двух, трех, четырех элементов базы, т. е. множество

$$S_{H_1}^{//S} = \{\varepsilon, (14), (23), (56), (78), (14)(23), (14)(56), (14)(78), (23)(56), (23)(78) \\ (56)(78), (14)(23)(56), (14)(23)(78), (14)(56)(78), (23)(56)(78), (14)(23)(56)(78) \}.$$

Третья симметрическая производная это множество оставляет без изменения. Таким образом, множество $S_{H_1}^{I/S}$ образует группу — группу симметрий подгруппы H_1 . Эта группа симметрий представляет собой подгруппу 16-го порядка симметрической группы S_8 , которая содержит 40 320 элементов и при делении на 16 дает 2520.

2. В работе [1] для конечной группы и ее автоморфизма φ вводится определение - пространства.

Доказывается, что если автоморфизм инволютивный, то такое -пространство инвариантно относительно всех своих элементов. Такие -пространства называются симметрическими пространствами.

Доказано в [1], что в группе S_4 существует только 10 симметрических пространств, соответствующих инволютивным автоморфизма

$$\begin{split} A_{(12)}: X &\to (12)X(12), \, A_{(13)}: X \to (13)X(13), \, A_{(14)}: X \to (14)X(14), \\ A_{(23)}: X &\to (23)X(23), \, A_{(24)}: X \to (24)X(24), \, A_{(34)}: X \to (34)X(34), \\ A_{(12)(34)}: X &\to (12)(34)X(12)(34), \, A_{(13)(24)}: X \to (13)(24)X(13)(24), \\ A_{(14)(23)}: X &\to (14)(23)X(14)(23), \, A_{\varepsilon}: X \to \varepsilon \, X \, \varepsilon. \end{split}$$

Эти $10 \, \varphi$ -пространств записываются в виде

$$\begin{split} X_{(12)} &= \{\varepsilon, (132), (123), (142), (124), (12)(34)\} \\ X_{(13)} &= \{\varepsilon, (132), (123), (143), (134), (13)(24)\} \\ X_{(14)} &= \{\varepsilon, (143), (142), (134), (124), (14)(23)\} \\ X_{(23)} &= \{\varepsilon, (123), (132), (234), (243), (23)(14)\} \\ X_{(24)} &= \{\varepsilon, (124), (142), (234), (243), (13)(24)\} \\ X_{(34)} &= \{\varepsilon, (134), (143), (234), (243), (12)(34)\} \\ X_{(12)(34)} &= \{\varepsilon, (13)(24), (14)(23)\} \\ X_{(13)(24)} &= \{\varepsilon, (12)(34), (14)(23)\} \\ X_{(14)(23)} &= \{\varepsilon, (12)(34), (13)(24)\} \\ X_{\varepsilon} &= \{\varepsilon\}. \end{split}$$

Ф-пространства $X_{(12)}$, $X_{(13)}$, $X_{(14)}$, $X_{(23)}$, $X_{(24)}$, $X_{(34)}$ имеют общий элемент ε , причем каждые два из них имеют пару общих элементов, являющихся между собой взаимно обратными в группе S_4 .

Эти -пространства можно изобразить в виде обобщенных графов на кубе, центр которого есть ε , шесть φ -пространств задаются вершинами прямоугольников, лежащих в плоскостях симметрии куба (рисунок 1), а еще одна вершина задается парой точек, являющихся центрами противоположных граней куба, такую вершину будем называть ocoбoй, а одноточечные вершины – obsurpsize ocofoimu.

При таком задании -пространства, имеющие общую особую вершину, будут иметь две общих точки, а φ -пространства, имеющие разные особые вершины, — три общих точки. При этом получим следующие задания -пространств графами:

$$X_{(12)} = \{\varepsilon, A', A, B', B, P\}, X_{(13)} = \{\varepsilon, A', A, D', D, R\}, X_{(14)} = \{\varepsilon, D', B', D, B, Q\}, X_{(23)} = \{\varepsilon, A, A', C', C, Q\}, X_{(24)} = \{\varepsilon, B, B', C', C, R\}, X_{(34)} = \{\varepsilon, D', D, C', C, P\}.$$

Три оставшихся -пространства будут изображаться графами, соответствующими боковыми гранями треугольной пирамиды с вершиной ε (рисунок 2).

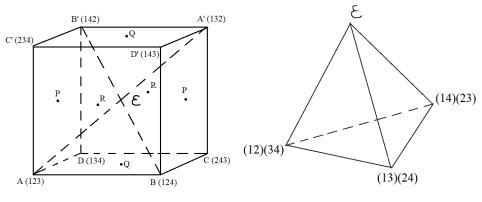


Рисунок 1

Рисунок 2

Будем находить группы симметрий данных -пространств.

Рассмотрим -пространство $X_{(12)} = \{\varepsilon, (132), (123), (142), (124), (12), (34)\}$. Найдем базу симметрий для этого φ -пространства. В соответствии с работой [1] находим симметрии этого -пространства относительно всех шести элементов. Получим множество перестановок

$$B_{X_{(12)}}^S = \{(23)(45), (13)(46), (14)(36), (15)(26), (12)(56), (24)(35)\}.$$

Находим первую симметрическую производную множеств этой базы:

	(12)(56)	(13)(46)	(14)(36)	(15)(26)	(23)(45)	(24)(35)
(12)(56)	ε	(132)(456)	(142)(356)	(16)(25)	(123)(465)	(124)(365)
(13)(46)	(123)(465)	ε	(16)(34)	(153)(246)	(132)(456)	(135)(264)
(14)(36)	(124)(365)	(16)(34)	ε	(154)(236)	(145)(263)	(142)(356)
(15)(26)	(16)(25)	(135)(264)	(145)(263)	ε	(154)(236)	(153)(246)
(23)(45)	(132)(456)	(123)(465)	(154)(236)	(145)(263)	ε	(25)(34)
(24)(35)	(142)(356)	(153)(246)	(124)(365)	(135)(264)	(25)(34)	ε

В результате взятия первой симметрической производной в группу симметрий пространства $x_{(12)}$ добавятся следующие элементы:

$$S_{X_{(12)}}^{/S} = \{\varepsilon, (16)(25), (16)(34), (25)(34), (123)(465), (124)(365), (132)(456), (135)(264), (145)(263), (142)(356), (153)(246), (154)(236)\}.$$

Возьмем вторую симметрическую производную. В результате взятия второй симметрической производной в группу симметрий добавятся шесть элементов:

$$S_{X_{(12)}}^{//S} = \{(1562)(34), (1265)(34), (1364)(25), (1463)(25), (2453)(16), (2354)(16)\}.$$

Взятие третьей симметрической производной новых элементов не дает, следовательно, совокупность элементов базы, первой и второй производной образует группу симметрий -пространства $X_{(12)}$, и эта группа симметрий состоит из 24 элементов:

$$S_{X(12)} = \{\varepsilon, (23)(45), (13)(46), (14)(36), (15)(26), (12)(56), (24)(35), (16)(25), (16)(34), (25)(34), (123)(465), (124)(365), (132)(456), (135)(264), (145)(263), (142)(356), (153)(246), (154)(236), (1562)(34), (1265)(34), (1364)(25), (1463)(25), (2453)(16), (2354)(16)\}.$$

По следствию из теоремы 4 [1], симметрия элементов сохраняется при всех автоморфизмах групп, следовательно, изоморфные группы и -пространства будут иметь одинаковые группы симметрий.

Ф-пространство $X_{(13)}$ при помощи автоморфизма $X \to a^{-1}Xa$, где a=(23) переводится в -пространство $X_{(12)}$. Аналогично, φ -пространства $X_{(14)}, X_{(23)}, X_{(24)}, X_{(34)}$ переводятся соответствующими автоморфизмами в φ -пространства $X_{(12)}$, значит, все эти φ -пространства имеют одну и ту же группу симметрий (1).

При помощи автоморфизма $X \to a^{-1}Xa$, где a=(23), φ -пространство $X_{(12)(34)}$ переходит в -пространство $X_{(13)(24)}$, а при помощи автоморфизма с элементом a=(34) φ -пространство $X_{(13)(24)}$ переходит в φ -пространство $X_{(14)(23)}$, поэтому все φ -пространства $X_{(12)(34)}, X_{(13)(24)}, X_{(14)(23)}$ имеют одну и ту же группу симметрии. Вычисляя базу симметрии пространства $X_{(12)(34)}$, получим один элемент ε . Следовательно, группа симметрии каждого из пространств $X_{(12)(34)}, X_{(13)(24)}, X_{(14)(23)}$ является тривиальной. Тривиальной является и группа симметрий -пространства $X_{\varepsilon} = \{\varepsilon\}$. Получаем следующую теорему.

Теорема. Все шесть -пространств $X_{(12)}, X_{(13)}, X_{(14)}, X_{(23)}, X_{(24)}, X_{(34)}$ имеют одинаковую группу симметрий – группу

 $S_{X(12)} = \{\varepsilon, (23)(45), (13)(46), (14)(36), (15)(26), (12)(56), (24)(35), (16)(25), (16)(34), (25)(34), (123)(465), (124)(365), (132)(456), (135)(264), (145)(263), (142)(356), (153)(246), (154)(236), (1562)(34), (1265)(34), (1364)(25), (1463)(25), (2453)(16), (2354)(16)\}.$

Группа симметрий каждого из -пространств $X_{(12)(34)}, X_{(13)(24)}, X_{(14)(23)}, X_{\varepsilon}$ явля-ется тривиальной.

Заключение

Рассмотренные в работе -пространства симметрической группы S_4 и их симметрии позволяют получить новые характеристики для конечных групп, что, в свою очередь, позволяет провести классификацию подгрупп по свойствам групп симметрии.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Юдов, А. А. Симметрия в конечной группе и ее свойства / А. А. Юдов, Е. В. Кисилюк, А. М. Кузьмич // Веснік Брэсцкага ўніверсітэта. Серыя 4, Фізіка. Матэматыка. -2023. -№1. -C. 93–104.
- 2. Юдов, А. А. Группы симметрии подгрупп группы S_4 / А. А. Юдов, Е. В. Арабчик, Д. С. Арабчик, Е. В. Кисилюк // Веснік Брэсцкага ўніверсітэта. Серыя 4, Фізіка. Матэматыка. 2024. № 1. С. 119—122.
- 3. Монахов, В. С. Введение в теорию конечных групп и их классов / В. С. Монахов. Минск : Выш. шк., 2006. 207 с.

REFERENCES

- 1. Judov, A. A. Simmietrija v koniechnoj gruppie i jejo svojstva / A. A. Judov, Je. V. Kisiliuk, A. M. Kuz'mich // Viesnik Bresckaha univiersit'ta. Sieryja 4, Fizika. Matematyka. − 2023. − № 1. − S. 93−104.
- 2. Judov, A. A. Guppy simmietrii podgrupp gruppy S_4 / A. A. Judov, Je. V. Arabchik, D. S. Arabchik, Je. V. Kisiliuk // Viesnik Bresckaha univiersit'ta. Sieryja 4, Fizika. Matematyka. -2024. -No 1. -S. 119-122.
- 3. Monachov, V. S. Vviedienije v tieoriju koniechnykh grupp i ikh klassov / V. S. Monakhov. Minsk : Vysh. shk., 2006. 207 s.