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A PRIORI CHOICE OF THE REGULARIZATION PARAMETER
IN AN ITERATIVE PROCEDURE OF AN EXPLICIT TYPE SOLUTION
OF LINEAR ILL-POSED EQUATIONS

The explicit iteration procedure with variable-alternating step for solution of ill-posed operator equa-
tions of the first kind is proposed in Hilbert space. Convergence of a method is proved in case of a priori choice
of the regularization parameter in usual norm of Hilbert space, supposing that not only the right part of the
equation but the operator as well have errors. The estimations of an error and a priori stopping moment are
received. The results given in the article can be used in theoretical research in solving linear operator equa-
tions, as well as in solving applied ill-posed problems.
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AnpuopHuulii 6p100p napamempa peynapu3ayuu
6 UMepayuorHoI npoyedype A6HO20 MURA PeuleHUA TUHEHHBIX HEKOPPEKMHbIX YPAGHEH U

B ecunvbepmosom npocmpancmee npeonazaemcs A6HAsS UMEPAYUOHHAS Npoyedypa ¢ NnonepemeHHo
YepeOYIOWUMCA WAOM peleHUss HeKOPPEKMHbIX ONepamopHbIX YPAGHEHUll nepeozo pooda. Jlokazana cxoou-
MOCmb MemoOa 8 caydae anpuopHoz2o 6vlO0pa Napamempa pezyrapusayuu 6 UCXOOHOU HOpMe UnbOepmosa
NPOCMPAHCMEA 6 NPeONnOLONCeHUU, YMO NOSPEWHOCIU UMEIOMCA He MOJbKO 6 NpAGoU uacmu YpagHeHus.,
HO u 6 onepamope. Ilonyuenvl oyenku nocpewHocmuy Memood u anpuopHulli Momenm ocmanosa. Ilpusedennvie
pe3yibmamyl MO2ym Oblmb UCHOIB306AHbL 8 MEeOPEeMUYECKUX UCCIeO08AHUAX NPU PeuleHUU JTUHEHbIX onepa-
MOPHBIX YPAGHEHULL, A MAKdiCce NPU peuleHul RPUKIAOHbIX HEKOPPEKMHbIX 30al.

Kniouegvie cnosa: ssnas umepayuonnas npoyeoypa, HeKOppeKmHas 3a0ava, 2uibbepmoso npocmpam-
CMB0, CAMOCONPAICEHHBII U HECAMOCONDSANCEHHBIU NPUOIUNICEHHO 3A0AHNbIL ONepamop, onepamopHoe ypasHe-
HUe nepeoco pooa, anpuopHslli MOMEHM 0CMAHOEA.

Introduction

There is a large class of problems where solutions are unstable to small changes in the
source data, i. e. arbitrarily small changes in the source data can lead to large changes in solu-
tions. Tasks of this type belong to the class of incorrect tasks.

A significant part of the problems encountered in applied mathematics, physics, engi-
neering and management can be represented in the form of an operator equation of the first kind

Ax=y, xeX, yeY 1)

with the specified operator A: X —Y and an element y, where X and Y — metric spaces, and
in specially specified cases — Banach or even Hilbert spaces.
J. Hadamard [1] introduced the following concept of correctness:
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Definition. The task of finding a solution Xe€ X equation (1) are called correct
(or correctly posed, or Hadamard-correct) if, for any fixed right-hand side of equation (1), its
solution is y =Yg €Y equation (1) its solution:

a) exists in space X;

b) it is uniquely defined in the space X;

c) it is stable in the space X, i.e. it continuously depends on the right side of yeY.
In case of violation of any of these conditions, the task is called incorrect (incorrectly posed);
more specifically, in case of violation of condition c), it is called unstable.

It can be seen from the definition that Hadamard correctness is equivalent to unambig-

uous certainty and continuity of the inverse operator A over the entire space Y.

For many years, it has been believed in mathematics that only correct problems have
the right to exist, that only they correctly reflect the real world.

There is an opinion about incorrect tasks that they do not have a physical reality, so
their solution is meaningless. As a result, incorrect tasks have not been studied for a long
time. However, in practice, the need to solve incorrect tasks has become more and more fre-
quent and persistent.

Such problems include the Cauchy problem for the Laplace equation, the problem of
solving an integral equation of the first kind, the problem of differentiating a function given
approximately, the numerical summation of Fourier series when the coefficients are known
approximately in the metric |, , the inverse problem of gravimetry, the inverse problem of po-

tential theory, the problem of spectroscopy, etc.

Iterative methods occupy a special place among the methods of solving incorrect prob-
lems, since they are easily implemented on a PC. Various iterative schemes for solving incor-
rectly set tasks have been proposed in the works [2-12].

In this article, an explicit iterative procedure with alternating steps for solving
ill-posed problems in Hilbert space is proposed and some of its properties are investigated.

Comparison of the proposed method with the well-known explicit Landweber iteration
method [2] X415 =Xns +{Ys —Axns) Xo,5 =0 shows that the orders of their optimal

estimates are the same.

The advantage of explicit methods is that explicit methods do not require operator in-
version, but only require calculating operator values on successive approximations. In the
Landweber method, the parameter o (anti-gradient step) is constrained from above — the ine-

: 5 . . . o
quality 0 < a <——, which may lead in practice to the need for a large number of iterations.

4Al
However, the proposed method has an advantage over the Landweber method in the follow-
ing: to achieve optimal accuracy, it will require making the number of iterations about 3 times
less than the iteration method [2].

As is known, the error of the method of simple iteration with a constant [2—4] or a var-
iable [8] step depends on the sum of the anti-gradient steps, and moreover, in such a way that
in order to reduce the number of operations, it is desirable that the anti-gradient steps be as
large as possible.

However, these steps are subject to restrictions from above [2—4; 8]. The idea arises to
try to loosen these restrictions.

This was done by choosing two values for the step o and B alternately, where B it is

no longer required to meet the previous requirements.

The explicit iterative method considered in the article will find practical application
in applied mathematics: it can be used to solve problems encountered in optimal control theo-
ry, mathematical economics, geophysics, potential theory, antenna synthesis, acoustics, plas-
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ma diagnostics, in terrestrial or aerial geological exploration, in solving the inverse kinematic
problem of seismics, space research (spectroscopy) and medicine (computed tomography).

1. Setting the task
An equation of the first kind is solved in a real Hilbert space H

Ax =y 2)

with a positive bounded self-adjoint operator A for which zero is not an eigenvalue, but
0 e Sp(A), therefore, the problem under consideration is incorrect. It is assumed that for the

exact right-hand side of y, equation (2) has a single exact solution x". To find it, we use an ex-
plicit iterative procedure with alternating steps:

Xnl = (I _an+1A) Xn+tonays X =0, apng=0, oy =B n=012,.., (3)

where 1 is the identical operator.
In the case of the approximate right-hand side Y, ||y — ys| <8, iterations (3) will take
the form:

%15 =(1 =01 A)Xn 5 +anaaYs: Xos =0, o =ct oo =P, N=012,.... (4)

Below, the convergence of method (4) means the statement that approximations (4)
come arbitrarily close to the exact solution of equation (2) with a suitable choice of n and suf-
ficiently small oness. In other words, the iterative method (4) is convergent if

é!i_r)no(irr]]f Ix— xmuj 0 [9].

Next, we will assume that || 4] =1.

2. A priori choice of the number of iterations with the approximate right-hand side

Methods (3) and (4) were considered in [6], in which the convergence of both methods
in the initial norm of Hilbert space was studied. For their convergence in [6], it is required
that when O0<a <2, B>0:

\(1—&%)(1—6%)\<1 (5)
for anyone A (0,1]. Condition (5) is equivalent to the combination of two conditions:

(oc+B)2 <8af3, (6)
af<a+f. (7)
For method (4), the priori choice of the number of iterations is studied [6]. It is proved

that the iterative process (4) converges under the conditions (6), (7) and O<a <2, if we
choose the number of iterations n depending on & so that n§—0, n— 0, 8 — 0.

Assuming that the exact solution of x* is originally representable, i. e. x* = ASz, s>0
and under the conditions 0 < a < 2, (6),

oc+[3<goc[3, (8)

%-ﬁ-OLBSOL-I-B. ©9)
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The following estimation of the error of the method (4) is obtained:
[x=xn 5] < s°[n(a+B)]"® ||z||+g(oc+[3)6. (10)

To find the optimal error estimate for n, we equate the derivative of n from the right
side of inequality (10) to zero.
Then the optimal error estimate for n has the form

el = @25 B

and it turns out when Nopt = (O“FBJ ~os/(s+1) 5—1/(s+1)”z”]/(s+1)_
2

Thus, the optimal estimate for method (4) with an inaccuracy on the right side of the
equation turns out to be the same as the estimate for the simple iteration method [2].

Therefore, method (4) does not provide an advantage in majority estimates compared
to method [2].

But it gives a win in the following: in the method of simple iteration with a constant
step [2] 0< a s%, and in the method (4) 0 <°°T+B <4 [6]

Therefore, by choosing a.and f alternating accordingly, it is possible to make the nop

in method (4) about three times smaller than in the method of simple iteration with a constant
step [2].

Thus, using method (4), to achieve optimal accuracy, it is enough to make iterations
three times less than using method [2]. We present several suitable values satisfying the re-
quired conditions:

o 0,8 0,9 1,0 11 1,15 1,17 1,3
B 4,4 5,0 5,5 6,1 6,4 6,5 4,1

The largest amount o+ and, therefore, the largest gain in the amount of calculations
are given by the values a=1.17 and B =6.5.

Since in the highlighted case o +p=7.67, the condition o+ <8 shows that almost
the maximum possible gain has been achieved.

Remark 1. Convergence estimates were obtained for the case when I=m=g.

+B)

In the case when | = m+1, in all assessments the n(aT should be replaced by lo.+mp.

Remark 2. We believe that |A|=1. In fact, all the results are easily transferred to the

case when A < .

3. A priori choice of the regularization parameter with an approximate operator
We prove the convergence of method (4) in the case of an a priori choice of the regu-
larization parameter when solving an equation A x = ys with an approximately given opera-

tor A, and an approximate right-hand side y5, we obtain a priori error estimates.
Similar questions were studied in [3; 6-7], but only for other methods.
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3.1. The case of self-adjoint operators
Let A=A 20, A, = A: >0, Sp(A,) <=[0,1], 0<n<ng. The iterative method (4)
IS written as

Xnn,5) = In(Ay) Vs, 4h

where g,(L) :k‘lb—(1—ak)”/2(1—Bk)”/2]. In the work [6] at 0 <o <2, (6) and (7) the
conditions for the functions g, (1) are obtained:

+
sup |9, (W) < yn, yzazﬁ, n>0, (11)
0<a<1
sup 1-2g9, (M) <70, Yo=1 n>0. (12)

01

Assuming that the exact solution of x* equation (2) is source-representable,
i.e. x* =A%z, s>0, where s> 0Qis the degree of source-representability of the exact solution,

|lz| < p and under the conditions 0 < a. < 2, (6), (8) and (9) the estimation was received:

S
sup APL—2rg, (W) <ysn %, vs = (a%ﬁ) ,(n>0), 0<s<oo, (13)
0<A<1

Fair

Lemma 1. Let A=A" >0, A =A; >0, [A —Al<n, sp(A)<[0.1], (0<n<mng)
and the conditions are met 0 <o <2, (6), (7), (12). Then |Gy, v|—>0 by n—w, n—0,
Vv e H, where Gﬂn = - Aqgn(Aq)

Proof.
We have

Sy =11 - Avgn AV =

1
[@-2g, () dEyv
0

<

_ + }(1— )2 (1—Br)"2 dE, v .

€

[(L—on)"2(1—pA)"2 dE, v
0

}(1— od)"2(1—BA)"2 dE, v
0

1
| dE; v

€

F(L- o) 20— P2 dE,v| < q"2(e)

€

since for A e[, 1] |(1—aA)1—BA) < q(e) <1.

— 0, n — o,

[(L—00)"2(1—pr)"2 dE,v
0

< =||E;v| > 0,6 >0

€
[dE,V
0

due to the properties of the spectral function [5-6]. Therefore, HGnnV‘ —>0 byn—>ow, n—0.

Lemma 1 is proved.
The convergence condition for method (4) gives
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Theorem 1. Let A=A >0, A, = Afl >0, HAn - A” <, Sp(A,) =[0.1], (0<n<mny),
y € R(A), |y—Yys||<8 and the conditions are met 0< o <2, (6), (7), (11). Lets choose the
parameter n=n(3,m) in approximation (4) so that (&+n)n(d,n) —>0 by n(d,n) — x,
8 —0,m—0. Then X(s.m) —Xx by §>0,n—0.

Proof.
From (4%) we have x, =g, (A,)ys. Then

Xn =X =0n(A)Ys =X =—CpyX +GpX + 0 (A)Y5 —X =
=—GppX + (1= A Gn(A)X +0n(A)Ys =X ==CppX +8n(A)(Ys — AX).

Therefore, X, — X = —Gnnx* +0n (AD(Ys — Anx*).
p

Because according to the condition (11) Hgn(An)H < sup |gn(k)| <yn, y :%, and
0<a<1

Iys = Apx] = Iy =yl |y = Apc] = Iys =yl [Ax = A
then we have HXn(s,n) - X*H < HG”"X*H + Hgn (An)(y5 - Anx*]‘ < HGnnx*H + yn(s +nHX*H)_

It follows from Lemma 1 that

<5+[A- A,]HHX*H <5+ on*H ,

GnnX*H —0 by n— o, n—0, and by the condition

of theorem 1 n(8+n) -0 by 6 >0, n— 0. Thus, Hxn(&n) — X*H —0, 83>0,1—0.
Theorem 1 has been proved.
Theorem 2. Let A=A" >0, A, = A; >0, HAI1 —A”Sn, Sp(An)g[O, 1], 0<n<ng),
y €R(A), |y—ys|<8 and the conditions are met 0<a <2, (6), (8), (9), (11), (12), (13).
If the exact solution is representable from the source, i.e. X =A%z, s>0, [z] <p, then the
error estimate is fair:

min(1,s)

p+ysn_sp+yn(8+nHX*H), 0<s<oo,

Xn(dm) — X H < YoCsM

Proof.
We have, using the source-like representability of the exact solution,

o= <l o~ e <06 0

p A

min(l,s)

since by lemma 1.1 [3, p. 91] <cn™@S) ¢ =const (¢, <2 for 0<s<1). Then

p+ysn_sp+yn(8+nux*u), 0<s<oo, (14)

Xn@,m) — X H < 7YoCsN

Theorem 2 has been proved.
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If we minimize the right side of the estimate (14) by n, we get the value of an a priori
1(s+1)

*

stopping moment: _ _ SYsP —d pY(sHD [8+n X

opt
ey

1/(s+1) 4
_ S’Ys o+ _ =]\ —
where dg —(Tj . From here Nopt :S(Tﬁj o=s/(s+) p1/(s+1)(8 +T1HX H) Y(s+1)

J—l/(s+1)

)
*

X

Substitute n_ . in the estimate (14), we get

opt

* *

X

s/(s+1)
) N

. —-S
<19en™ @ Ip +ygp(dgp? ) (5+n
1/(s+1)
)jspll(s+l) (8 +1 y _
/(s+1)
)5 (ds—syspll(sﬂ) +,Ydsp1/(s+1)):
/(s+1)

= YOCST] T ’

where ¢, = dZ Sy, +d, = (Sll(s+1) 4 S—s/(s+1))Ys/(s+1)y§/(s+1) — (L+5)27°/*D_ From here

. s/(s+1)
< Csnmln(l,s) (L +S)2—s/(s+1) p1/(s+1)(8 i ) _

Hﬁmm—xom

+y(8+n X X

*

min(1,s) X

=7Y0CsN p+@+n

*

min(d,s) X

p+p1/(5+1)cé (8"'71

*

X

*
Xn(s,m) ~ X

opt

3.2. The case of non-self-adjoint operators
In the case of a non-self-adjoint problem, the iterative method (4) will take the form:

X(n+D(m.8) = %n,8 _an+1(A:A\1Xn(n,6) - A:YS) Xom,5) =0,
Oony =0, N=0,12,.. o,.,=B n=012,... (15)

It can be written like this:
Xngns) = In (AT ADA,Ys. (16)
Lemma 1 implies.

Lemma 2. Let HAq—Ausn, HAnH2 <1 (0<m<ny) and the conditions are met
O<a<2,(6),(7),(12). Then

[Kog¥] =0 by n—>e0, n—0, WeN(A)* =R(A), (17)
Wmﬂaownaw,naoxneMNY=W§, (18)

where Ky, =1 - A A G (AA). Koy =1 - AN (AA):

We use lemma 2 to prove the following theorem.
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Theorem 3. Let [A—A | <n, HM\Z <1, (0<n<mg), YeR(A), |ys—Y|<8 and the
conditions are met 0 <a < 2, (6), (7), (12).). Let's choose the parameter n = n(8,n) so that

(3+m)n(5,m) = 0 by n(E,n) > »,8—>0, n—0. (19)

Then xn(&n)—>x* by 50, n—0.

Proof.
For the approximation error X, ), We have

Koo =X =KX+ Gn(AA) AL {ys — AX) (20)

NN RN N

(see the lemma 3.1 [3, p. 35] and [6]). Because

Here

<y.n"?, oy =sup[n‘]/2 sup x]/2|gn(k)|j <(o+p)?
>0 0<isl

Ivs = Ao <lvs =1+ [y = A =lvs = -+ [ - Apc] <+ nf],
that Hgn(Aq*,%)A; (y5 — Aqx*)‘ <(a+p)2n? (8 + Hx*Hn). There fore

Ko (x*)H + (o + B 2nY? (8 + on*H).

g 5 v - A <

*
Knnx H+

*
Xn(,m) ~ X H <

Let’s show that

KnnX*H — 0 by n— oo, 1 — 0. Really,

Ko = |1 = A A g0 (A A =

1
[@-2g,00)dE; X"
0

}(1— ar)"2(1-pa)"2 dE, x*

€

E(l— o) 2(L—p2)"2 dE, x*

1
g (1—on)"2(1-B1)V2 dE, X"

<

+

1
Then [[(1— ad)V2(L—B1)"2 dE, x*[ < q"?(e)

€

— 0, n— oo, since for & e[e, 1]

1 *
[ dE; x
€

<

Z(l— o) 21— pA)"? dE, x"

(A-ar)@-Br) <qle) <1. A EX|—>0e-0

€ *
[dE, x
0

due to the properties of the spectral function.
From the condition (19) n(8+n)2 —->0byn—»w, 5§50 mn—0.

From here (o + )2 n1/2(8 + on*H)e 0, n>w, 8§50, 0.

Thus, Hxn(&n) - X*H -0, n>o, 8§50, n—0.

Theorem 3 has been proved.
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Fair
Theorem 4. Let [A- Al <n. [A|" <1, ©<n<no). yeR(A), |ys-y]<5. If the

. « W2 y
exact solution is represented as x =|Az, s>0, |Z|<p, |A :(A A)'/ and the conditions
aremet 0<a <2, (6), (8), (9), (12), (13), then the error estimate is fair

Xn(.m) ~ X*H <7Y0Cs (1+||nﬂ|)‘1nin(l’s)P+Ys/2n_s/2p+ ((x+[3)]/2 nY? (8+HX*HT]), 0<s<oo,

Proof.

. . * * )8/2
In the case of a source-like representable exact solution x =|A|Sz = (A A)S/ z from

s/2
(13) we will get sup k3/2|1—xgn(k)| Sys/zn_s/z , where v/ =(;j _

0<h<1 2(a+B)
Then
s s S/2 - * /2
Konl 0 2= [~ Ao (A3 Jo| ()1 Aon A ] <1
From here

< yocs L+ In ™" )p 1y o052,

Kon|Av] 2

since from [3, p. 92] we have ‘Ah‘

= [Kon{ A - a7 j

1+||nn|)nm'n(ls) cs =const (¢g <2 by 0<s<1

). From (20) we have

Xn@,m) ~ X*H <|Kny X [+ Y, nY?2 (8 + Hx*Hn)z K nX*H + (oc + [3)1/2 nY? (6 + Hx*Hn)s

<YoCs (1+ |In n|)r]”in(1’s)p + ys/zn_s/zp + (a + B)]/Z Y2 (8 + HX*Hn), 0<s<oo. (21)

Theorem 4 has been proved.
Minimizing the right-hand side (21) by n, we obtain the value of the a priori stopping
moment:

)—2/(s+1) _

s 2/(s+1)
nopt = ( YYS/Z ] pZ/(S+l) (6 + X*

0-5/(5+1) g(5+2)/(5+D) (o 4 Y Lp2/ (5D (8 N HX* )_2/(s+1)_

I

Substituting Nopt into the estimate (21), we obtain the optimal error estimate for the it-

eration method (15):

) . s/(s+1)
Xa(om) — X*H <Yoce (1+|Inn|)nmm(1 s)p+cﬂp3/(8+1) 5+Hx Hn O<s<oo,
N opt

1 — 1 1 1
where c? z(sv(sw \s s/(s+>jy s/(s+)y5/21/(s+) _ (25) @D 5 1),

*
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Thus,

s/(s+1)

<cg(1+]In n|)nmin(1’s)p + (2S)_S/(2(S+l)) (s +1)pY D) (8 + Hx*Hn) , 0<s<oo,

*
Hxn(s,n) —X Hopt

Remark 3. The optimal error estimate does not depend on o andg, but n,,, depends
on o and B. Therefore, in order to reduce the amount of computational work, it is necessary
to take o and B as much of the conditions as possible0 < a < 2, (6), (8), (9), (11), (12), (13)
and insuchawaythat n,,, Z.

Conclusion

In this article, some properties of the proposed explicit iteration scheme for solving
ill-posed problems are studied: the convergence of approximations with an a priori choice of
the regularization parameter in the initial norm of Hilbert space in the case of a bounded
self-adjoint and non-self-adjoint inaccurately specified operator is proved, error estimates and
estimates for stopping moments are obtained.
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