УДК 512.542

DOI 10.63874/2218-0303-2025-1-73-84

Полина Александровна Павлушко¹, Александр Александрович Трофимук² ¹студент 4-го курса физико-математического факультета

Стубент 4-го курси физико-математического факультета Брестского государственного университета имени А. С. Пушкина ²д-р физ.-мат. наук, доц., зав. каф. фундаментальной математики Брестского государственного университета имени А. С. Пушкина

Polina Pavlushko¹, Alexander Trofimuk²

¹4-th Year Student of the Faculty of Physics and Mathematics of Brest State A. S. Pushkin University

²Doctor of Physical and Mathematical Sciences, Associate Professor, Head of the Department of Fundamental Mathematics of Brest State A. S. Pushkin University e-mail: ¹polinapavlushko@gmail.com; ²alexander.trofimuk@gmail.com

КОНЕЧНЫЕ ГРУППЫ С ЗАДАННЫМИ СИСТЕМАМИ tcc, -ПОДГРУПП*

Подгруппы A и B группы G называются cc -перестановочными $\operatorname{bt} G$, если A перестановочна $\operatorname{ct} B^{\operatorname{gt}}$ для некоторого элемента $\operatorname{g} \in \langle A, B \rangle$. Подгруппа At группы Gt называется tcc_n -подгруппой $\operatorname{gt} G$, если $\operatorname{gt} G$ существует подгруппа $\operatorname{gt} G$ такая, что $\operatorname{Gt} G = \operatorname{At} G$ и каждая нормальная подгруппа из $\operatorname{gt} G$ существует подгруппой из $\operatorname{gt} G$. $\operatorname{gt} G$ работе доказана сверхразрешимость группы $\operatorname{gt} G$, факторизуемой сверхразрешимыми $\operatorname{gt} G$, подгруппой $\operatorname{gt} G$ и $\operatorname{gt} G$. Кроме того, установлена сверхразрешимость группы, у которой максимальные, силовские, максимальные из силовских, минимальные, 2-максимальные подгруппы являются tcc_n -подгруппами.

Ключевые слова: tcc_n -подгруппа, максимальная подгруппа, силовская подгруппа, минимальная подгруппа, факторизуемая группа, сверхразрешимая группа.

Finite Groups with Given Systems of tcc, -Subgroups

The subgroups A and B are said to be cc -permutable, if A permutes with B^g for some $g \in \langle A, B \rangle$. A subgroup A of a finite group G is called tcc_n -subgroup of G, if there exists a subgroup T of G such that G = AT and every normal subgroup of A is cc -permutable with all subgroups of T. In this paper we proved the supersolubility of the group G factorized by supersoluble tcc_n -subgroups A and B. In addition, we obtained the supersolubility of a group whose maximal, Sylow, maximal of Sylow, minimal, 2-maximal subgroups are tcc_n -subgroups.

Key words: tcc_n -subgroup, maximal subgroup, Sylow subgroup, minimal subgroup, factorizable group, supersoluble group.

Введение

Рассматриваются только конечные группы. Используемая терминология соответствует в [1; 2]. Запись $H \leq G$ означает, что H — подгруппа группы G . Если $H \leq G$ и $H \neq G$, то пишем H < G . Запись $H \unlhd G$ означает, что H — нормальная подгруппа группы G .

Подгруппы A и B группы G называются перестановочными, если AB = BA. Заметим, что равенство AB = BA равносильно тому, что $AB \le G$. Подгруппы A и B группы G называются сс-перестановочными B G (условно перестановочными) [3], если A перестановочна с B^g для некоторого элемента $g \in \langle A, B \rangle$.

^{*}Работа выполнена при финансовой поддержке Министерства образования Республика Беларусь (ГПНИ «Конвергенция-2025», номера государственной регистрации 20211467).

В последнее десятилетие активно развивается направление, связанное с изучением строения групп с заданными системами условно перестановочных подгрупп. Очевидно, что если в группе подгруппа перестановочна со всеми подгруппами группы, то она перестановочна и со всеми подгруппами из добавления к ней. Так, в работе [4] введено понятие tcc-подгруппы (подгруппа A группы G называется tcc-подгруппой в группе G, если в G существует подгруппа Y такая, что G = AY и каждая подгруппа из A сс-перестановочна с каждой подгруппой из Y. В [4] также получен целый ряд признаков сверхразрешимости группы с заданными системами tcc-подгрупп.

Сузив множество перестановочных подгрупп из подгруппы и добавления к ней, введем следующее

Определение. Подгруппа A группы G называется tcc_n -подгруппой в G, если она удовлетворяет следующим условиям:

- 1) в G существует подгруппа T такая, что G = AT;
- 2) каждая нормальная подгруппа из A сс-перестановочна c каждой подгруппой из T.

Подгруппа T в определении будем называть tcc_n -добавлением κ A ϵ G. Очевидно, что каждая tcc -подгруппа группы G является tcc_n -подгруппой группы G, но обратное не всегда выполняется. Например, в симметрической группе S_4 знакопеременная подгруппа A_4 является tcc_n -подгруппой в G, но не является tcc -подгруппой.

Доказана следующая теорема.

Теорема 1.

- 1. Пусть A u B tcc_n -noдгруппы группы G u G = AB. Если A u B сверхразрешимы, то G сверхразрешима.
- 2. Пусть G = AB произведение подгрупп A и B. Если все силовские подгруппы из A и из B являются tcc_n -подгруппами в G, то G сверхразрешима.

Следствие 1.1.

Пусть A u B — tcc_n -noдгруппы группы G u G = AB. Если A u B p-сверхразрешимы, то G p-сверхразрешима.

Из теоремы 1 и следствия 1.1 вытекают результаты работ [3-6], представленных в следствии 1.2.

Следствие 1.2.

- 1. Пусть G = AB тотально перестановочное произведение сверхразрешимых подгрупп A и B. Тогда G сверхразрешима [5, теорема 3.1].
- 2. Пусть G = AB tcc-перестановочное произведение сверхразрешимых подгрупп A и B. Тогда G сверхразрешима [3, teopema A].
- 3. Пусть G = AB произведение сверхразрешимых tcc -подгрупп A u B . Тогда G сверхразрешима [4, tcopema [4].
- 4. Пусть G = AB тотально перестановочное произведение p -сверхразрешимых подгрупп A u B . Тогда G p -сверхразрешима [6, лемма].
- 5. Пусть G = AB tcc -перестановочное произведение p -сверхразрешимых подгрупп A u B . Тогда G p -сверхразрешима [5, teopema 4.1].
- 6. Пусть G = AB произведение p -сверхразрешимых tcc -подгрупп A u B . Тогда G p -сверхразрешима [4, teopema 4.1].

7. Если все силовские подгруппы из A и из B являются tcc -подгруппами в G = AB, то G сверхразрешима [4, teopema 4.2].

Группы, у которых 2-максимальные подгруппы, максимальные подгруппы из силовских подгрупп, минимальные подгруппы удовлетворяют некоторому типу перестановочности, исследовались многими авторами (например, список литературы в [7; 8]).

В теореме 2 изучено строение конечной группы, у которой 2-максимальные подгруппы, максимальные подгруппы из силовских подгрупп или все минимальные подгруппы являются tcc, -подгруппами.

Теорема 2.

- 1. Если каждая циклическая подгруппа простого порядка или порядка 4 из G является tcc_n -подгруппой в G, то группа G сверхразрешима.
- 2. Если каждая 2-максимальная подгруппа из G является tcc_n -подгруппой в G, то группа G сверхразрешима.
- 3. Если каждая максимальная подгруппа из каждой нециклической силовской подгруппы разрешимой группы G является tcc_n -подгруппой s G, то группа G сверхразрешима.

Следствие 2.1.

- 2. Если каждая 2-максимальная подгруппа из G является tcc-подгруппой s G, то группа G сверхразрешима [4, teopema [5,3].
- 3. Если каждая максимальная подгруппа из каждой нециклической силовской подгруппы разрешимой группы G является tcc-подгруппой s G, то группа G сверхразрешима [4, tcopema [4].
- 4. Если каждая циклическая подгруппа простого порядка или порядка 4 из G является tcc-перстановочной в G, то группа G сверхразрешима [3, теорема 3.10].
- 5. Если каждая 2-максимальная подгруппа из G является tcc-перестановочной e G, то группа G сверхразрешима [3, tcopema 3.10].

Вспомогательные результаты

Приведем известные результаты, которые неоднократно будут использоваться в доказательствах.

Через G, Z(G), F(G) и $\Phi(G)$ обозначаются коммутант, центр, подгруппы Фиттинга и Фраттини группы G соответственно; $O_p(G)$ и $O_p(G)$ и $O_p(G)$ — наибольшие нормальные в G p - и p -подгруппы соответственно; $\pi(G)$ — множество всех простых делителей порядка группы G. Элементарная абелева группа порядка p^t и циклическая группа порядка m обозначаются E_{p^t} и Z_m соответственно, а [A]B — полупрямое произведение нормальной подгруппы A и подгруппы B.

Для доказательства теорем 1 и 2 нам понадобятся следующие утверждения.

Лемма 2.1 ([9, лемма 6]). Предположим, что разрешимая группа G несверхразрешима, но фактор-группа G/K сверхразрешима для каждой неединичной нормальной в G подгруппы K. Тогда справедливы следующие утверждения:

- (1) группа G содержит единственную минимальную нормальную подгруппу N , $N = F(G) = O_p(G) = C_G(N)$ для некоторого $p \in \pi(G)$;
 - (2) $Z(G) = O_{p'}(G) = \Phi(G) = 1$;
- (3) G примитивная группа; G = [N]M, где M максимальная подгруппа в группе G с единичным ядром;
 - (4) N элементарная абелева подгруппа порядка p^n , n > 1;
- (5) если подгруппа M абелева, то M циклическая порядка, делящего p^n-1 , а n наименьшее натуральное число, удовлетворяющее сравнению $p^n \equiv 1 \pmod{|M|}$.
- **Лемма 2.2** ([10, лемма 3.5]). Если в разрешимой группе G существует подгруппа H простого индекса, то G/H_G сверхразрешима.

Напомним, что подгруппа A называется *полунормальной* в группе G, если существует подгруппа B такая, что G = AB и AX — подгруппа для каждой подгруппы X из B.

Лемма 2.3 ([11, лемма 10]). Если A — полунормальная 2-нильпотентная подгруппа группы G, то подгруппа A^G разрешима.

Лемма 2.4 ([13, теорема]). Пусть G — группа u H — подгруппа g G. Предположим, что для каждого простого g, делящего порядок группы G, существует силовская g-подгруппа G_g группы G такая, что G0 G1 субнормальна G3.

Лемма 2.5 ([14, теорема 2]). Пусть G — группа, $p \in \pi(G)$, $p \neq 3$. Если существует $\{p,r\}$ -холлова подгруппа для каждого $r \in \pi(G)$, то G p-разрешима.

Лемма 2.6

- (1) $A \text{tcc}_n$ -noдгруппа в H для каждой подгруппы H группы G такой, что $A \leq H$;
 - (2) $AN/N tcc_n$ -nodгруппа в G/N для каждой $N \subseteq G$;
- (3) для каждой $A_1 \subseteq A$ и $X \subseteq Y$ существует $y \in Y$ такой, что $A_1 X^y \subseteq G$. В частности, $A_1 M \subseteq G$ для некоторой максимальной подгруппы M группы Y и $A_1 H \subseteq G$ для некоторой π -холловой подгруппы H разрешимой группы Y и любого $\pi \subseteq \pi(G)$;
 - (4) $A_1K \leq G$ для каждой субнормальной подгруппы K в Y и для каждой $A_1 \leq A$;
- (5) для каждого i=1,...,s и каждой субнормальной подгруппы K из Y имеем $A_iK^g \leq G$ для любого $g \in G$;
- (6) если Y разрешима и A r-замкнута, то силовская r-подгруппа A_r из A субнормальна в G, где r наибольшее простое число в $\pi(G)$;
 - (7) если A 2-нильпотентна, то A' субнормальна в G . Доказательство.
 - 1. Так как $Y tcc_n$ -добавление к A в G, то G = AY. По тождеству Дедекинда

$$H = H \cap AY = A(H \cap Y)$$
.

Так как $H \cap Y \leq Y$, то для любых $X \subseteq A$ и $Z \leq H \cap Y$ существует элемент $u \in \langle X, Z \rangle$ такой, что $XZ^u \leq G$. Поэтому $A - \mathrm{tcc}_n$ -подгруппа в H.

2. Так как G = AY, то

$$G/N = (AN/N)(YN/N)$$
.

Пусть B/N — произвольная нормальная подгруппа из AN/N и X/N — произвольная подгруппа в YN/N . Так как $N \le B \le AN$, то по тождеству Дедекинда

$$B = B \cap AN = (B \cap A)N$$
.

Аналогично,

$$X = X \cap YN = (X \cap Y)N$$
.

Так как $B \cap A \subseteq A$ и $X \cap Y \subseteq Y$, то

$$(B \cap A)(X \cap Y)^u \leq G$$

для некоторого $u \in \langle B \cap A, X \cap Y \rangle$. Поэтому

$$(B/N)(X/N)^{uN} = (B \cap A)(X \cap Y)^{u} N/N \leq G/N$$

ДЛЯ

$$uN \in \langle B \cap A, X \cap Y \rangle N / N \subset \langle B, X \rangle N / N = \langle B / N, X / N \rangle.$$

Значит, $AN/N - tcc_n$ -подгруппа в G/N.

3. Так как $A-\mathrm{tcc}_n$ -подгруппа группы G , то по определению для каждой $A_{\mathrm{l}} \unlhd A$ и $X \unlhd Y$ существует $u \in \langle A_{\mathrm{l}} X \rangle$ такой, что $A_{\mathrm{l}} X^u \subseteq G$. Так как

$$u \in G = AY = YA$$
,

то u = ya для некоторых $y \in Y$ и $a \in A$. Тогда

$$A_1X^u = A_1X^{ya} = A_1(X^y)^a = A_1^a(X^y)^a = (A_1X^y)^a \le G.$$

Поэтому существует подгруппа $A_{\mathbf{l}}X^y$ в группе G для некоторого $y \in Y$. Очевидно, что если $X-\pi$ -холлова подгруппа группы Y, то $H=X^y-\pi$ -холлова подгруппа группы Y. Поэтому $A_{\mathbf{l}}H \leq G$. Аналогично и в случае, когда X — максимальная подгруппа группы Y. Тогда $M=X^y$ — максимальная подгруппа группы Y и $A_{\mathbf{l}}M \leq G$.

4. Поскольку K субнормальная подгруппа в Y, то существует цепь подгрупп

$$Y = K_0 \ge K_1 \ge ... \ge K_{n-1} \ge K_n = K$$
,

в которой подгруппа K_{i+1} нормальна в K_i для всех i . Применим индукцию по n . По п. (3) существует $y \in Y$ такой, что

$$A_1K_1^y=A_1K_1\leq G.$$

Поэтому утверждение справедливо для n=0 и n=1. Значит, $n\geq 2$. Согласно п. (1), A- tcc -подгруппа в AK_1 и K_1- tcc -добавление к A в AK_1 . Так как длина субнормальной цепи между K и K_1 меньше, чем n, то по индукции в группе AK_1 существует подгруппа A_1K , а следовательно, $A_1K\leq G$.

5. Так как $g \in G = AY = YA$, то g = ya для некоторых $y \in Y$ и $a \in A$. Тогда

$$A_{i}K^{g} = A_{i}K^{ya} = A_{i}(K^{y})^{a} = (A_{i}K^{y})^{a}.$$

Так как K субнормальна в Y, то K^y субнормальна в Y. Из (4) следует, что $A_iK^y \leq G$. Поэтому $AK^g \leq G$.

6. Применим индукцию по |G|. Из (3) следует, что $AY_1 \leq G$ для некоторой r -холловой подгруппы Y_1 из Y. Если $AY_1 < G$, то из (1) следует, что A – tcc_n -подгруппа в AY_1 и по индукции A_r субнормальна в AY_1 . Кроме того, A_r субнормальна в некоторой силовской r -подгруппе G_r из G. Пусть $Y_r \leq R$, где R – силовская r -подгруппа из G и $R^g = G_r$ для некоторого $g \in G$. По [12, теорема 1], A_r субнормальна в $G = AY = AY_1Y_r = (AY_1)Y_r^g = (AY_1)G_r$.

Далее считаем, что $G = AY_1$. Из (3) следует, что $AQ \le G$ для некоторой силовской q -подгруппы Q из Y_1 . Если AQ < G, то $A - \operatorname{tcc}_n$ -подгруппа в AQ и по индукции A_r субнормальна в AQ. Следовательно, A_r нормальна в AQ и $Q \le N_G(A_r)$. Поскольку это верно для любого $q \in \pi(Y_1)$, то A_r нормальна в $G = AY_1$.

Следовательно, G = AQ. Согласно (4), Q — минимальное tcc_n -добавление к A в G . Из (3) следует, что AM < G для некоторой максимальной подгруппы M из Q. Поскольку A — tcc_n -подгруппа в AM , то по индукции A_r субнормальна в AM и, следовательно, A_r нормальна в AM . Поскольку |G:AM| = q , то $G/(AM)_G$ изоморфна подгруппе симметрической группы S_q . Следовательно, $G_r \leq (AM)_G \leq AM$ и $A_r = G_r$ субнормальна в G .

7. Применим индукцию по |G|. Из (3) следует, что для каждого $p \in \pi(Y)$ существует силовская p-подгруппа Y_p из Y такая, что $AY_p \leq G$. Предположим, что $AY_p < G$ для каждого $p \in \pi(Y)$. Тогда из (1) следует, что A является tcc_n -подгруппой в AY_p и по индукции A' субнормальна в AY_p . Ясно, что для каждого $p \in \pi(G)$ существует силовская p-подгруппа R из G такая, что $R \leq AY_p$. Так как $A' \leq \langle A', R \rangle \leq AY_p$, то A' субнормальна в $\langle A', R \rangle$. По лемме 2.4, A' субнормальна в G.

Следовательно, $G = AY_q$ для некоторого $q \in \pi(Y)$. Из (4) следует, что A полунормальна в G. Так как A 2-нильпотентна, то, по лемме, $2.3\,A^G$ разрешима. Следовательно, $G = AY_q = A^GY_q$ разрешима. Из (4) следует, что Y_q является минимальным tcc_n -добавлением к A в G и AT < G для некоторой максимальной подгруппы T группы Y_q . Поскольку A является tcc_n -подгруппой в AT, то по индукции A' субнормальна в AT. Поскольку |G:AT| = q, то по лемме $2.2\,G/(AT)_G$ сверхразрешима, и, следовательно,

$$(G/(AT)_G)' = G'(AT)_G/(AT)_G$$

нильпотентна. Так как $A' \leq G'$, то

$$A'(AT)_G/(AT)_G \le G'(AT)_G/(AT)_G$$

и, следовательно, $A'(AT)_G$ субнормальна в G . Ясно, что $A' \leq A'(AT)_G \leq AT$. Так как A' субнормальна в AT , то A' субнормальна в $A'(AT)_G$ и A' субнормальна в G .

Лемма 2.7 Группа G сверхразрешима, если каждая максимальная (силовская) подгруппа из G является tcc_n -подгруппой в G.

Доказательство.

1. Пусть M — произвольная максимальная подгруппа в G . По лемме 2.6 (3) следует, что $MY_p \leq G$ для некоторой силовской p -подгруппы Y_p группы Y . Так как M — максимальная подгруппа в группе G , то или $MY_p = M$, или $MY_p = G$. Если $MY_p = M$ для всех $p \in \pi(Y)$, то $Y \leq M$ и G = MY = M — противоречие. Поэтому существует $q \in \pi(Y)$ такое, что $MY_q = G$ и Y_q — tcc_n -добавление к подгруппе M в группе G . По лемме 2.6 (4) можно считать, что Y_q — минимальное tcc_n -добавление к подгруппе M в группе G . По лемме 2.6 (3) MS < G и |G:MS| = q для некоторой максимальной подгруппы S сверхразрешима.

2. Покажем, что G разрешима. Пусть R силовская r-подгруппа группы G. Тогда R- tcc_n -подгруппа в G. Пусть T- tcc_n -добавление к R в G. По лемме 2.6 (3) $RQ \leq G$ для некоторой силовской q-подгруппы Q из T и для каждого $q \in \pi(T) \setminus \{p\}$. Подгруппа RQ $\{r,q\}$ -холлова подгруппа группы G. Тогда G r-разрешима для $r \neq 3$. Пусть t — наименьшее простое число из $\pi(G)$. Если t > 2, то G разрешима. Если t = 2, то по доказаному выше G t-разрешима и, следовательно, G разрешима.

Теперь покажем, что G сверхразрешима. Предположим, что заключение теоремы ложное, и пусть G — контрпример наименьшего порядка. Пусть N — нормальная неединичная подгруппа группы G и RN/N — силовская r -подгруппа фактор-группы G/N. По лемма 2.6 (2) RN/N — tcc_n -подгруппа фактор-группы G/N. Тогда G/N сверхразрешима по выбору группы G.

Пусть P — силовская p -подгруппа группы G , где p — наибольшее простое число из $\pi(G)$. По лемме 2.6 (6) P субнормальна в G и поэтому P нормальна в G . Следовательно, G имеет единственную нормальную подгруппу N такую, что $N = C_G(N) = O_p(G) = F(G) = P$ и N — элементарная абелевая подгруппа порядка $p^n, n > 1$.

Пусть $T-\operatorname{tcc}_n$ -добавление к подгруппе P в G. Пусть $P_1-\operatorname{минимальная}$ нормальная подгруппа в P. Ясно, что $|P_1|=p$. По лемме 2.6 (3) следует, что для каждого $r\in\pi(T)$ существует силовская r подгруппа R из T такая, что $P_1R\leq G$. Если $p\neq r$, то $P\cap P_1R=P_1(P\cap R)=P_1$ нормальная подгруппа в P_1R и $R\leq N_G\left(P_1\right)$. Так как данное включение выполняется для любого $r\in\pi(T)\setminus\{p\}$, то $T_1\leq N_G\left(P_1\right)$ для некоторой p -холловой подгруппы T_1 из T. Поэтому P_1 нормальна в $G=PT=PT_pT_1=PT_1$ — противоречие.

Доказательство теоремы 1

Покажем, что в двух случаях группа G разрешима. По лемме 2.6 (7) A' и B' субнормальны в G. Если A и B абелевы, то, по теореме Ито, G разрешима. Следовательно, будем считать, что либо $A' \neq 1$, либо $B' \neq 1$. Предположим, что $A' \neq 1$. По лемме 2.7 (2) подгруппа A сверхразрешима. Поэтому в каждом из случаев подгруппа A сверхразрешима и $(A')^G$ нильпотентна. Если $(A')^G = G$, то G разрешима. Если $(A')^G < G$, то $G'(A')^G$ сверхразрешима. Следовательно, G разрешима.

1. Предположим, что теорема неверна, и пусть G — контрпример минимального порядка. Пусть N — неединичная нормальная подгруппа группы G. Подгруппы $AN/N \simeq A/A \cap N$ и $BN/N \simeq B/B \cap N$ являются tcc_n -подгруппами в G/N по лемме 2.6 (2), $AN/N \simeq A/A \cap N$ и $BN/N \simeq B/B \cap N$ сверхразрешимы. Следовательно, G/N = (AN/N)(BN/N) сверхразрешима по индукции.

Так как по условию A и B являются сверхразрешимыми tcc_n -подгруппами разрешимой группы G , по лемме 2.6 (6) A_p и B_p субнормальны в G для наибольшего простого числа $p \in \pi(G)$.

Поскольку $P=A_pB_p$ является силовской p-подгруппой G, то G является p-замкнутой. По лемме 2.1 G имеет единственную минимальную нормальную подгруппу N такую, что $N=C_G(N)=\mathrm{O}_p(G)=F(G)=P$ и N является элементарной абелевой подгруппой порядка p^n , n>1.

Без ограничения общности будем считать, что $A_p \neq 1$. Поскольку A_p -замкнута, то $|A_1| = p$, где A_1 — минимальная нормальная подгруппа в A. По лемме 2.6 (3) $A_1Y_1 \leq G$ для некоторой p -холловой подгруппы Y_1 из Y . Тогда

$$A_1 = P \cap A_1 Y_1 = A_1 (P \cap Y_1)$$

является нормальной в A_1Y_1 .Следовательно, $Y_1 \leq N_G(A_1)$. Так как P абелева, то силовская p -подгруппа Y_p из Y централизует A_1 и A_1 нормальна в $G = AY_pY_1$ — противоречие.

2. Пусть N — неединичная нормальная в G подгруппа. Тогда фактор-группа G/N = (AN/N)(BN/N).

Пусть S/N — силовская s -подгруппа в AN/N и T — силовская s -подгруппа в $S \cap A$. Тогда TN/N силовская s -подгруппа в

$$(S \cap A)N/N = S/N$$
.

Поэтому TN/N=S/N. Так как $T\leq A$, то $T\leq A_s$, где A_s — некоторая s -подгруппа группы A. Тогда $TN/N\leq A_sN/N$ и A_sN/N — силовская s -подгруппа группы AN/N. Поэтому

$$S/N = TN/N = A_{s}N/N$$
.

По условию A_s — tcc_n -подгруппа в G. По лемме 2.6 (2) S/N — tcc_n -подгруппа в G/N. Аналогично, если K/N — силовская подгруппа из BN/N, то K/N — tcc -подгруппа в G/N. Таким образом, условие теоремы наследуют все фактор-группы и по индукции G/N сверхразрешима.

Так как G разрешима, то по лемме 2.6 (6) силовские подгруппы A_p и B_p подгрупп A и B субнормальны в G для наибольшего простого числа p из $\pi(G)$. Тогда силовская p -подгруппа P группы G нормальна в группе G . По индукции G/P сверхразрешима, поэтому группа G имеет силовскую башню сверхразрешимого типа.

Предположим, что G — контрпример минимального порядка. По лемме 2.1 G — примитивная группа, и для G сохраним обозначения, выписанные в этой лемме. В частности, N = P и G = [N]M.

Пусть Q — силовская q -подгруппа из M , $q \in \pi(M)$. Так как $M = G_p$, то $Q = A_q B_q$ для некоторых силовских q -подгрупп A_q и B_q из A и B соответственно.

Пусть U — tcc -добавление к A_q в G . Так как N — p -подгруппа группы G , то $N \leq U$. Пусть N_1 — минимальная нормальная подгруппа в N . По лемме 2.6 (4) $A_q N_1 \leq G$ и $A_q \leq N_G(N_1)$, так как N_1 субнормальна в U и G p -замкнута. Аналогично, $B_q \leq N_G(N_1)$. Следовательно, $Q \leq N_G(N_1)$. Так как данное включение справедливо для любого $q \in \pi(G) \setminus \{p\}$, то $M \leq N_G(N_1)$. Поэтому N_1 нормальна в G = NM — противоречие. Теорема доказана.

Доказательство теоремы 2

1. Предположим, что теорема неверна, и пусть G — минимальный контрпример. Пусть K — собственная подгруппа группы G. По лемме 2.6 (1) каждая циклическая подгруппа простого порядка или порядка 4 группы K является tcc_n -подгруппой в K. Тогда по индукции K сверхразрешима, и, следовательно, G — минимальная несверхразрешимая группа. По [15] G разрешима, G имеет единственную нормальную силовскую p-подгруппу P и $P = G^\mathfrak{A}$, $\overline{P} = P/\Phi(P)$ является минимальной нормальной подгруппой в $\overline{G} = G/\Phi(P)$ и $|P/\Phi(P)| > p$. Кроме того, P имеет экспоненту p, если $p \neq 2$, и экспоненту не более 4, если p = 2.

Предположим, что p=2. Пусть $x\in P$ и $P_1=\langle x\rangle$. Тогда $|P_1|=2$ или $|P_1|=4$. По условию, P_1 является tcc_n -подгруппой в G. По лемме 2.6 (3) G имеет 2-холлову подгруппу S такую, что $P_1S\leq G$. По $[2,\mathrm{IV}.2.8]$ $P_1\leq N_G(S)$ и, следовательно, $P\leq N_G(S)$ и S нормальна в G — противоречие.

Предположим, что p>2 . Пусть $\overline{K}=K/\Phi(P)$ — подгруппа порядка p в \overline{P} . Тогда $\overline{K}=\langle x\Phi(P)\rangle=\langle x\rangle\Phi(P)/\Phi(P).$

Так как $x\in P$, то $|\langle x\rangle|=p$ и, следовательно, по лемме 2.6 (2) \overline{K} является tcc_n -подгруппой в \overline{G} и $\overline{T}=T/\Phi(P)$ является tcc_n -добавлением к \overline{K} в \overline{G} . Следовательно, по лемме 2.6 (3) для любого $r\in\pi(\overline{T})$, $r\neq p$ существует силовская r-подгруппа \overline{R} группы \overline{T} такая, что $\overline{KR}\leq\overline{G}$. Ясно, что \overline{R} является силовской r-подгруппой в \overline{G} . Имеем, что

$$\overline{P} \cap \overline{K}\overline{R} = \overline{K}(\overline{P} \cap \overline{R}) = \overline{K}$$

нормальна в $\overline{K}\overline{R}$ и $\overline{R} \leq N_{\overline{G}}(\overline{K})$. Так как \overline{P} абелева, то \overline{K} нормальна в \overline{G} . Следовательно, $\overline{K} = \overline{P}$ – противоречие.

2. Предположим, что утверждение ложно, и пусть G – минимальный контрпример. По лемме 2.6 (1) и по (1.1) каждая максимальная подгруппа M из G сверхразрешима. Следовательно, G – минимальная несверхразрешимая группа. Тогда по [15] G разрешима, $|\pi(G)| \le 3$ и G имеет единственную нормальную подгруппу

 $P = G^U$. Ясно, что $\Phi(G) = 1$. Следовательно, P — минимальная нормальная подгруппа порядка p^n , n > 1 и G = [P]M для некоторой максимальной подгруппы M группы G.

Если $|\pi(G)|=3$, то G имеет силовскую башню сверхразрешимого типа и $M=T\rtimes R$, где |T|=t, |R|=r и $t,r\in\pi(G)$. Подгруппы T и R являются 2-максимальными подгруппами группы G. Тогда по условию $TY_1=G=RY_2$, где Y_1 и Y_2 являются tcc_n -добавлениями в G. Кроме того, $P\leq Y_1$ и $P\leq Y_2$. Пусть P_1 — минимальная нормальная подгруппа группы P. Тогда по лемме 2.6 (4) $TP_1\leq G$ и $TP_1\leq G$, и следовательно, $T\leq N_G(P_1)$ и $R\leq N_G(P_1)$, поскольку G p-замкнута. Тогда P_1 нормальна в G=PM=PTR — противоречие.

Итак, $|\pi(G)|=2$. Тогда M является q-подгруппой. Если |M|>q, то M имеет максимальную подгруппу M_1 такую, что $M_1\neq 1$. Ясно, что $H=P\rtimes M_1$ — максимальная подгруппа в G. Поскольку H сверхразрешима, то H имеет максимальную подгруппу H_1 такую, что $M_1\leq H_1$ и $|H:H_1|=p$. По условию, H_1 является tcc_n -подгруппой в G. Тогда $H_1V=G$, где V — tcc_n -добавление к H_1 в G. Пусть K_1 — минимальная нормальная подгруппа в H_1 . Поскольку H_1 сверхразрешима, то $|K_1|=p$.

По лемме 2.6 (3) V имеет силовскую q-подгруппу V_q такую, что $K_1V_q \leq G$. Следовательно, $V_q \leq N_G(K_1)$ и K_1 нормальна в $G = H_1V = H_1PV_q$ – противоречие.

Таким образом, |M|=q и P — максимальная подгруппа в G . Пусть P_1 — максимальная подгруппа в P . Тогда по условию $P_1K=G$, где K — tcc_n -добавление к P_1 в G . По лемме 2.6 (3) K имеет силовскую q -подгруппу K_1 такую, что $P_1K_1 \leq G$ и $K_1 \leq N_G(P_1)$. Следовательно, P_1 нормальна в $G=P_1K=PK_1$. Поэтому |P|=p — противоречие.

3. Пусть P — силовская p -подгруппа группы G . Если P циклическая, то G p -сверхразрешима. Пусть P нециклическая. Тогда по лемме 2.6 (3) для любой максимальной подгруппы P_i группы P и каждого $q \in \pi(G) \setminus \{p\}$ существует силовская q -подгруппа Q группы G такая, что $P_iQ \leq G$. По [16, Теорема 3.4] G p -сверхразрешима. Поскольку это верно для любого $p \in \pi(G)$, то G сверхразрешима.

Теорема доказана.

Заключение

В настоящей работе было рассмотрено понятие tcc_n -подгруппы, которое наряду с NS-добавляемой подгруппой из [16] является еще одним обобщением понятия tcc-подгруппы из [4]. В ходе исследования был получен целый ряд признаков сверхразрешимости группы с заданными системами tcc_n -подгрупп, которые естественным образом развивают результаты работы [4]. В перспективе результаты работы могут стать методическим подспорьем для исследования конечных групп с условно перестановочными субнормальными подгруппами из сомножителей и добавлений к ним.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Монахов, В. С. Введение в теорию конечных групп и их классов / В. С. Монахов. Минск : Выш. шк., 2006. С. 207.
 - 2. Huppert, B. Endliche Gruppen / B. Huppert. Berlin: Springer-Verlag, 1967.
- 3. Guo, W. Conditionally Permutable Subgroups and Supersolubility of Finite Groups / W. Guo, K. P. Shum, A. N. Skiba // Southeast Asian Bull. Math. 2005. Vol. 29. P. 493–510.
- 4. Trofimuk, A. A. On the supersolubility of a group with some tcc-subgroups / A. A. Trofimuk // Journal of Algebra and Its Applications. 2021. 2150020 (18 p.).
- 5. Asaad, M. On the supersolubility of finite groups / M. Asaad, A. Shaalan // Arch. Math. 1989. Vol. 53. P. 318–326.
- 6. Carocca, A. p-supersolvability of factorized finite groups / A. Carocca // Hokkaido Math. J. -1992. Vol. 21. P. 395–403.
- 7. Monakhov, V. S. Finite groups with subnormal non-cyclic subgroups / V. S. Monakhov, A. A. Trofimuk // Journal of Group Theory. 2014. Vol. 17, nr 5. P. 889–895.
- 8. Guo, W. Groups with maximal subgroups of Sylow subgroups σ -permutably embedded / W. Guo, A. N. Skiba // J. Group Theory. 2017. Vol. 20. P. 169–183.
- 9. Монахов, В. С. О сверхразрешимом корадикале произведения субнормальных сверхразрешимых подгрупп / В. С. Монахов, И. К. Чирик // Сибирский математический журнал. -2017. -T. 58, № 2. -C. 353–364.
- 10. Monakhov, V. S. On the supersolubility of a group with semisubnormal factors / V. S. Monakhov, A. A. Trofimuk // J. Group Theory. 2020. Vol. 23, nr 5. P. 893–911.
- 11. Княгина, В. Н. Конечные группы с полунормальными подгруппами Шмидта / В. Н. Княгина, В. С. Монахов // Алгебра и логика. 2007. Т. 46, № 4. С. 448–458.
- 12. Wielandt, H. Subnormalität in faktorisierten endlichen Gruppen / H. Wielandt // J. Algebra. 1981. Vol. 69. P. 305–311.
- 13. Casolo, C. Acriterion for subnormality and Wielandt complexes in finite groups / C. Casolo // J.Algebra. –1994. Vol. 169. P. 605–624.
- 14. Tyutyanov, V. N. Finite groups with biprimary Hall subgroups / V. N. Tyutyanov, V. N. Kniahina // J. Algebra. 2015. Vol. 443. P. 430–440.
- 15. Doerk, K. Minimal nicht uberauflösbare, endliche gruppen / K. Doerk // Math. Z. 1966. Vol. 91. P. 198–205.
- 16. Monakhov, V. S. On the supersolubility of a finite group with NS-supplemented subgroups / V. S. Monakhov, A. A. Trofimuk // Acta Math. Hung. -2020. Vol. 160, nr 1. P. 161–167.

REFERENCES

- 1. Monakhov, V. S. Vviedienije v tieoriju koniechnykh grupp i ikh klassov / V. S. Monakhov. Minsk : Vysh. shk., 2006. S. 207.
 - 2. Huppert, B. Endliche Gruppen / B. Huppert. Berlin : Springer-Verlag, 1967.
- 3. Guo, W. Conditionally Permutable Subgroups and Supersolubility of Finite Groups / W. Guo, K. P. Shum, A. N. Skiba // Southeast Asian Bull. Math. 2005. Vol. 29. P. 493—510.
- 4. Trofimuk, A. A. On the supersolubility of a group with some tcc-subgroups / A. A. Trofimuk // Journal of Algebra and Its Applications. 2021. 2150020 (18 p.).

- 5. Asaad, M. On the supersolubility of finite groups / M. Asaad, A. Shaalan // Arch. Math. 1989. Vol. 53. P. 318–326.
- 6. Carocca, A. *p*-supersolvability of factorized finite groups / A. Carocca // Hokkaido Math. J. 1992. Vol. 21. P. 395–403.
- 7. Monakhov, V. S. Finite groups with subnormal non-cyclic subgroups / V. S. Monakhov, A. A. Trofimuk // Journal of Group Theory. 2014. Vol. 17, nr 5. P. 889–895.
- 8. Guo, W. Groups with maximal subgroups of Sylow subgroups σ -permutably embedded / W. Guo, A. N. Skiba // J. Group Theory. 2017. Vol. 20. P. 169–183.
- 9. Monakhov, V. S. O svierkhrazrieshimom koradikalie proizviedienija subnormal'nykh svierkhrazrieshimykh podgrupp / V. S. Monakhov, I. K. Chirik // Sibirskij matiematichieskij zhurnal. 2017. T. 58, № 2. S. 353–364.
- 10. Monakhov, V. S. On the supersolubility of a group with semisubnormal factors / V. S. Monakhov, A. A. Trofimuk // J. Group Theory. 2020. Vol. 23, nr 5. P. 893–911.
- 11. Kniagina, V. N. Koniechnyje gruppy s polunormal'nymi podgruppami Shmidta / V. N. Kniagina, V. S. Monakhov // Algiebra i logika. 2007. T. 46, № 4. S. 448–458.
- 12. Wielandt, H. Subnormalität in faktorisierten endlichen Gruppen / H. Wielandt // J. Algebra. 1981. Vol. 69. P. 305–311.
- 13. Casolo, C. Acriterion for subnormality and Wielandt complexes in finite groups / C. Casolo // J.Algebra. –1994. Vol. 169. P. 605–624.
- 14. Tyutyanov, V. N. Finite groups with biprimary Hall subgroups / V. N. Tyutyanov, V. N. Kniahina // J. Algebra. 2015. Vol. 443. P. 430–440.
- 15. Doerk, K. Minimal nicht uberauflösbare, endliche gruppen / K. Doerk // Math. Z. 1966. Vol. 91. P. 198–205.
- 16. Monakhov, V. S. On the supersolubility of a finite group with NS-supplemented subgroups / V. S. Monakhov, A. A. Trofimuk // Acta Math. Hung. -2020. Vol. 160, nr 1. P. 161–167.

Рукапіс паступіў у рэдакцыю 07.04.2025