УДК 004.92, 004.925.5,548.732

DOI 10.63874/2218-0303-2025-1-48-55

Ирина Николаевна Балухо I , Юрий Иванович Дудчик 2 , Николай Николаевич Кольчевский 3 аспирант I -го года обучения каф. физической электроники и нанотехнологий

Белорусского государственного университета
²канд. физ.-мат. наук, зам. директора по научной работе
Института прикладных физических проблем имени А. Н. Севченко
Белорусского государственного университета

³канд. физ.-мат. наук, доц., доц. каф. физической электроники и нанотехнологий Белорусского государственного университета

Iren Balukho¹, Yuri Dudchik², Nickolai Kolchevsky³

¹1-st Year Postgraduate Student of the Department of Physical Electronics and Nanotechnology of Belarusian State University

²Candidate of Physical and Mathematical Sciences, Deputy Director for Scientific Work of the A. N. Sevchenko Institute of Applied Physical Problems of Belarusian State University ³Candidate of Physical and Mathematical Sciences, Associate Professor, Associate Professor of the Physical Electronics and Nanotechnologies Department of Belarusian State University

e-mail: ¹iren.balukho@gmail.com; ²dudchik@bsu.by; ³kolchevsky@bsu.by

ШИРОКОПОЛОСНЫЙ ИСТОЧНИК РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ*

Проведен расчет спектра излучения широкополосного рентгеновского источника. Широкополосный рентгеновский источник состоит из нескольких источников рентгеновского излучения (рентгеновских трубок), которые одновременно или последовательно облучают заданный объект. Формирование спектра широкополосного источника заключается в выборе параметров отдельных источников излучения (материал анода, ток и рабочее напряжение трубки) таким образом, чтобы в результате суммирования был получен спектр, близкий к равномерному в заданном диапазоне длин волн. Получены основные соотношения и разработана программа «X-ray-multi-tube», позволяющие рассчитать тормозной спектр широкополосного рентгеновского источника, состоящего из N источников тормозного рентгеновского излучения в заданном диапазоне длин волн с учетом допуска на изменении интенсивности в спектре.

Ключевые слова: рентгеновское излучение, рентгеновская трубка, спектр тормозного рентгеновского излучения.

Broadband X-ray Source

Calculated the radiation spectrum of a broadband X-ray source. A broadband X-ray source consists of several X-ray sources (X-ray tubes) that simultaneously or sequentially irradiate a given object. Formation of the spectrum of a broadband source consists in choosing the parameters of individual radiation sources (anode material, current and operating voltage of the tube) in such a way that the summation results in a spectrum close to a regular spectrum in a given wavelength range. The basic relations are obtained and the program «X-ray-multi-tube» is developed, which allow to calculate the bremsstrahlung spectrum of a broadband source consisting of N X-ray sources in a specified wavelength range taking into account the intensity variation allowed in the spectrum.

Key words: X-ray radiation, X-ray tubes, bremsstrahlung X-ray spectrum.

Введение

В 2025 г. отмечается 130-летие с момента открытия рентгеновского излучения немецким физиком, первым Нобелевским лауреатом по физике профессором Вильгельмом Конрадом Рентгеном. Прогресс в области рентгеновских методов исследования неразрывно связан с развитием источников рентгеновского излучения [1–4].

^{*}Работа частично поддержана Министерством образования Республики Беларусь в рамках задания 3.12 ГПНИ «Механика, металлургия, диагностика в машиностроении», подпрограмма «Техническая диагностика».

 $\Phi I3IKA$ 49

Передовыми источниками рентгеновского излучения на сегодняшний день явля-(Курчатовский синхротроны источник синхротронного излучения ются: «КИСИ-Курчатов» (Россия) [5]), синхротроны 3-го поколения (The European Synchrotron Radiation Facility «ESRF» (Франция) [7], Super Photon ring – 8 GeV «Spring-8» (Япония) [8], Source Optimisée de Lumière d'Énergie Intermédiaire du LURE «SOLEIL» (Франция) [9]), лазеры на свободных электронах (European x-ray free electron laser «E-XFEL» (Германия) [10]) и строящиеся источники синхротронного излучения 3-го поколения (Русский Источник Фотонов «РИФ» (Россия) [6]) и 4-го поколения (Сибирский кольцевой источник фотонов «СКИФ» (Россия) [11], ESRF-EBS (Extremely Brilliant Source) (Франция) [12]). В составе строящегося Сибирского кольцевого источника фотонов «СКИФ» (Россия) будет создана белорусская исследовательская станция. Применение синхротронных источников является уникальным ввиду малого числа синхротронов и высокой стоимости их использования.

Самыми распространенными лабораторными источниками для методов неразрушающего контроля, медицины, рентгеновских исследований, являются рентгеновские трубки. Наибольшее количество компаний, выпускающих рентгеновские трубки для медицинского, промышленного и научного применения находится в США, например, General Electric-GE, Varex Imaging, DEL MEDICAL, North American imaging (NAI). Современными производителями рентгеновских трубок являются: Siemens (Германия), выпускающая мощные, более 100 КВт, трубки с вращающимся анодом, IAE (Industria Applicazioni Elettronoche) (Италия), выпускающая трубки с вращающимся анодом с 1965 г., Excillum (Швеция), выпускающая мощные микрофокусные рентгеновские трубки MetalJet на основе жидкого анода и нанофокусные рентгеновские трубки с прострельным анодом на основе вольфрама и алмаза, обеспечивающие разрешение до 150нм, Comet AG (Швейцария), выпускающая мощную рентгеновскую трубку на 600 КВ, Canon electron tubes & devices CO. – Toshiba (Япония), выпускающая рентгеновские трубки с 1915 года, Hamamatsu Photonics (Япония), выпускающая микрофокусные рентгеновские трубки с диаметром фокусного пятна 2-80 мкм, Oxford instruments x-ray technology (Великобритания) – в настоящее время продажи, обслуживание и поддержка приостановлены на территории Российской Федерации и Беларуси. Наиболее доступными оказываются производители Китая, например, KeyWay Electron Company Ltd (Китай); России: ЗАО ЭЛТЕХ-Мед (Россия), выпускающее рентгеновские трубки диаметром фокусного микрофокусные пятна менее АО Светлана-рентген (Россия), работающее с 1949 г. и выпускающее трубки для промышленного структурного и спектрального анализа, медицинского назначения с массивным и прострельным анодом, ООО Радиум (Россия), изготавливающее аналоги зарубежных рентгеновских излучателей [13]. В Республике Беларусь в индустриальном парке «Великий камень» зарегистрирована компания ООО «СиноБелМедика», которая планирует создать производство рентгеновских трубок.

Современное направление развития рентгеновских источников — разработка источников, отличающихся возможностью управлять характеристиками излучения используя, например, источники с несколькими анодами или катодами [14–17]. Источник с несколькими анодами будет характеризоваться уникальными спектральными характеристиками. В работе предложен новый тип рентгеновского источника, представляющего собой широкополосный рентгеновский источник со сложным анодом, который может быть реализован как многоэлементный источник, состоящий из нескольких анодов, одновременно или последовательно облучающих объект в эксперименте. Идея широкополосного рентгеновского источника заключается в формировании спектра, близкого к равномерному в заданном диапазоне длин волн. Создание таких широкополосных источников представляет собой задачу, вследствие решения которой могут

быть созданы конструктивно и принципиально новые источники для различного применения, например, для рентгеновской микроскопии, рентгенофлуоресцентных методов, цветовой рентгенографии.

Расчет спектра широкополосного рентгеновского источника

Рассмотрим задачу формирования широкополосного рентгеновского источника, представляющего собой источник со сложным анодом, состоящий из нескольких рентгеновских трубок, одновременно или последовательно облучающих объект в эксперименте [18]. Широкополосный рентгеновский источник должен характеризоваться равномерным спектром тормозного излучения в заданном диапазоне длин волн. Равномерный спектр может быть образован несколькими отдельными источниками тормозного рентгеновского излучения. Спектральная интенсивность (спектральная плотность потока энергий) широкополосного источника $I_{\lambda}(\lambda)$ в зависимости от длины волны будет представлять сумму n спектров тормозного излучения рентгеновских трубок $I_{\lambda i}(\lambda)$ без учета характеристического излучения. Для идеализированной рентгеновской трубки без учета эффектов самопоглощения тормозной спектр широкополосного рентгеновского источника может быть описан формулой [19]:

$$I_{\lambda}(\lambda) = \sum_{i=1}^{n} I_{\lambda i}(\lambda) = a \sum_{i=1}^{n} I_{i} Z_{i} \frac{\lambda - \lambda_{0i}}{\lambda_{0i} \cdot \lambda^{3}}, \tag{1}$$

где a — коэффициент пропорциональности, I_i — ток электронов на аноде отдельного источника, Z_i — атомный номер материала анода отдельного источника, λ_{0i} — минимальная или граничная длина волны отдельного источника, зависящая от ускоряющего напряжения на i-ой рентгеновской трубке U_i .

Формула (1) с математической точки зрения представляет собой сумму нелинейных функций, различающихся диапазонами длин волн $[\lambda_{0i};\infty)$, что будет приводить к нелинейной зависимости $I_{\lambda}(\lambda)$, состоящей из максимумов и минимумов. Отношение минимальной I_{min} интенсивности к максимальной I_{max} , в заданном диапазоне спектра, определяет значение допуска на изменении интенсивности в спектре $\beta = I_{min} / I_{max}$, лежащего в диапазоне (0;1). В соответствии со значением β определяется количество источников в заданном диапазоне спектра. Значение $\beta = I$ соответствует идеальному случаю равномерной интенсивности широкополосного источника и бесконечному количеству источников. Отдельный источник с учетом допуска β на изменение интенсивности в спектре широкополосного источника характеризуется диапазоном длин волн от λ_{min} до λ_{max} , в которой интенсивность изменяется от βI_{max} до I_{max} , как показано на рисунке 1.

Тормозной спектр в области малых длин волн ($\lambda < \lambda_{min}$), представляет собой резко убывающую обратную кубическую функцию. Кривая на правой части рисунка 1 ($\lambda > \lambda_{max}$) представляет убывающую обратную квадратичную функцию. В первом приближении можно считать, что спектр широкополосного источника является объединением спектров отдельных источников [λ_{min1} ; λ_{max1}] \cup [λ_{min2} ; λ_{max2}] $\cup ... \cup$ [λ_{minN} ; λ_{maxN}].

Для определения ширины спектра отдельного источника необходимо задать допуск на изменение интенсивности β (закрашенная область, рисунок 1). Максимальная интенсивность тормозного спектра достигается при длине волны равной $3/2 \lambda_0$. Чтобы найти границы спектра λ_{min} и λ_{max} , формулу (1) необходимо приравнять к βI_{max} :

$$aIZ\frac{\lambda - \lambda_0}{\lambda_0 \cdot \lambda^3} = \beta \cdot I_{\lambda} \left(\frac{3}{2}\lambda_0\right). \tag{2}$$

 $\Phi I3IKA$ 51

В результате алгебраических преобразований из уравнения (2) получим кубическое уравнение относительно переменной $y = \lambda/\lambda_0$ и величины допуска на изменение интенсивности β :

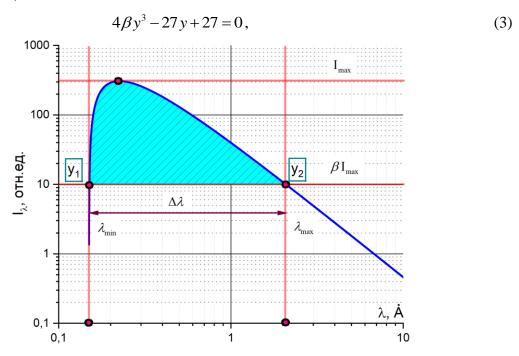


Рисунок 1 – Тормозной спектр рентгеновской трубки с медным анодом

Уравнение (3) имеет 3 действительных корня, один из которых отрицательный и не имеет физического смысла. Два положительных корня y_1 и y_2 соответствуют условию $y_2 > y_1$. Как показано на рисунке 1, y_1 определяет λ_{min} или левую границу спектра, y_2 определяет λ_{max} или правую границу спектра. Разность между λ_{min} и λ_{max} определяет ширину спектра отдельного источника $\Delta\lambda$ при заданном значении допуска на изменение интенсивности β и минимальной длине волны рентгеновского излучения λ_{min} . Множество решений уравнения (3) показаны на рисунке 2.

Полученные соотношения позволяют рассчитать широкополосный источник, состоящий из N отдельных источников, с заданным значением допуска на изменение интенсивности β в заданном диапазоне длин волн $\lambda_{min\Sigma}$ и $\lambda_{max\Sigma}$. Расчет спектра ведется от минимальной длины волны к максимальной. Алгоритм расчета содержит несколько итерационных этапов: на первом этапе определяется минимальная длина волны первого источника из соотношения $\lambda_{min1} = \lambda_{01} \cdot y_I$; на втором этапе определяется максимальное значение интенсивности первого источника из соотношения $I_{max} = I(3/2 \lambda_{01})$; на третьем этапе определяются максимальная длина волны первого источника из соотношения $\lambda_{max1} = \lambda_{01} \cdot y_2$. Данные этапы позволяют определить ширину спектра первого источника и максимальное значение интенсивности. Затем на следующей итерации минимальная длина волны второго источника рассчитывается с поправкой ξ на предыдущие итерации: $\lambda_{min2} = \lambda_{max1} + \xi$, — и процесс расчета по этапам 1—3 повторяется. Расчет ведется до достижения необходимой энергии $\lambda_{max\Sigma}$. Количество источников определяется диапазоном заданных длин волн $\lambda_{min\Sigma}$ и $\lambda_{max\Sigma}$ и допуском β , и может быть приближенно определено через корни уравнения (3) $y_I(\beta)$ и $y_2(\beta)$:

$$N = \frac{\Delta \ln \lambda}{\Delta \ln y(\beta)} \,. \tag{4}$$

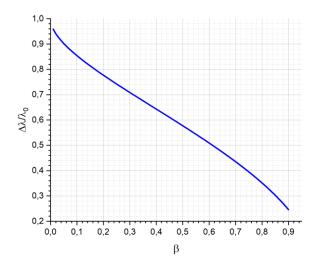


Рисунок 2 – График зависимости относительной ширины спектра от допустимого отклонения

Разработанная программа «X-ray-multi-tube» реализует вышеописанный алгоритм расчета спектра широкополосного источника [20–22]. Пример расчета спектра широкополосного источника показан на рисунке 3. Широкополосный источник состоит из трех источников (λ_{01} =0,14 Å, λ_{02} =0,22 Å, λ_{03} =0,25 Å). Каждый из источников представляет рентгеновскую трубку с медным анодом, работающих при различных напряжениях и токах U_I =90 кВ, I_I =2,9 мА, U_Z =57 кВ, I_Z =1,1 мА, U_Z =50 кВ, I_Z =2,2 мА. Ширина спектра широкополосного источника равна $\Delta\lambda$ =0,1 Å при допуске β =0,98.

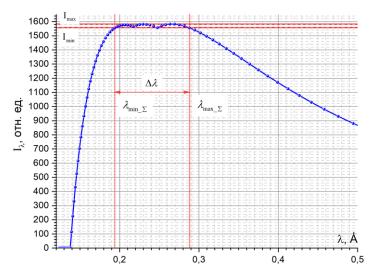


Рисунок 3 – Тормозной спектр широкополосного рентгеновского источника

Заключение

Широкополосный рентгеновский источник состоит из нескольких источников рентгеновского излучения (рентгеновских трубок), которые одновременно или последовательно облучают заданный объект. Формирование спектра широкополосного источника заключается в выборе параметров отдельных источников излучения (материал анода, ток и рабочее напряжение трубки) таким образом, чтобы в результате суммирования был получен спектр, близкий к равномерному в заданном диапазоне длин волн. Получены основные соотношения для расчета спектра широкополосного источника, состоящего

 Φ I3IKA 53

из N отдельных источников. Метод расчета положен в основу разработанной программы «X-ray-multi-tube».

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Attwood, D. Soft X-rays and extreme ultraviolet radiation: Principles and Applications / D. Attwood. Cambridge: Cambridge University Press, 1999. 470 p.
- 2. Мишетт, А. Оптика рентгеновского излучения / А. Мишетт. М. : Мир, 1989. 352 с.
- 3. Kumakhov, M. A. History of the evolution of the x-ray and neutron capillary optics / M. A. Kumakhov // Optics of Beams. -1993. Vol. 1. P. 3-17.
- 4. Carolyn, A. MacDonald. An Introduction to X-ray Physics, Optics, and Applications / MacDonald Carolyn A. United States: Princeton University Press, 2017. 368 p.
- 5. Курчатовский специализированный источник синхротронного излучения «КИСИ-Курчатов» // НИЦ «Курчатовский институт». URL: http://kcsni.nrcki.ru/pages/main/sync/index.shtml (дата обращения: 26.01.2025).
- 6. Синхротрон Русский Источник Фотонов («РИФ») // НИЦ «Курчатовский институт». URL: http://kcsni.nrcki.ru/pages/main/rsf/index.shtml (дата обращения: 26.01.2025).
- 7. ESRF // European Synchrotron Radiation Facility. Франция, 1990–2025. URL: https://esrf.fr/home.html (дата обращения: 28.01.2025).
- 8. SPring-8 // Riken SPring-8 Center. Япония, 1997–2025. URL: http://www.spring8.or.jp/en/ (дата обращения: 28.01.2025).
- 9. SOLEIL // Synchrotron SOLEIL. Франция, 2006–2025. URL: https://www.synchrotron-soleil.fr/en (дата обращения: 28.01.2025).
- 10. E-XFEL // European XFEL. Германия, 2017–2025. URL: https://www.xfel.eu (дата обращения: 30.01.2025).
- 11. Сибирский кольцевой источник фотонов «СКИФ» // ЦКП «СКИФ». URL: https://srf-skif.ru/index.php/ЦКП_«СКИФ»_(поколение_4%2B,_энергия_3_ГэВ) (дата обращения: 30.01.2025).
- 12. ESRF-EBS // European Synchrotron Radiation Facility. URL: https://esrf.fr/-cms/live/live/en/sites/www/home/about/upgrade.html (дата обращения: 30.01.2025).
- 13. Маломощные рентгеновские трубки (современное состояние) / А. С. Бугаев, П. А. Ерошкин, В. А. Романько, Е. П. Шешин // УФН. 2013. Т. 183, № 7. С. 727–740. DOI: 10.3367/UFNr.0183.201307c.0727.
- 14. Patent US 2024/0062985 A1, H01J 35/147 (2019.05). X-ray tube with flexible intensity adjustment: N_2 20240062985A1: filling date 10.08.2023: publ. date 22.02.2024 / Paul Radcliffe, Christian Hoffmann, Kaan Atak, Carsten Michaelsen; applicant incoatec GmbH. 18 p.
- 15. Patent US 11,116,462B2, A61B 6/03(2006.01), A61B 6/00(2006.01). X-ray system and method for generating x-ray image in color: № 11116462B2: filling date 28.08.2018: publ. date 14.09.2021 / Nabil Mohammed Maalej, Fahad Ahmad Abozaid; applicant KING FAHD University of petroleum and minerals. 24 p.
- 16. Патент RU 2645749C2, МПК H01J 35/00 (2006.01). Микрофокусная рентгеновская трубка: № 2645749C2: заявлено 23.05.2016: опубл. 28.02.2018 / Трубицын А. А., Грачев Е. Ю.; заявитель Федер. гос. бюджет. образоват. учреждение высш. образования «Рязанский государственный радиотехнический университет». 11 с.

- 17. Патент RU 2578675С1, МПК H01J 35/02 (2006.01). Многолучевая рентгеновская трубка : № 2578675С1 : заявлено 28.06.2013 : опубл. 27.03.2016 / Масленников О. Ю., Гузилов И. А. ; заявитель Демидова Е. В. -25 с.
- 18. Balukho, I. N. Broadband X-ray source / I. N. Balukho; scientific supervisor N. N. Kolchevsky // I Междунар. молодеж. науч.-культур. форум студентов, магистрантов, аспирантов и молодых ученых: сб. материалов / М-во образования Респ. Беларусь; Гомел. гос. техн. ун-т им. П. О. Сухого; Таизский ун-т; Науч. организация исследований и инноваций; под общ. ред. А. А. Бойко. Гомель: ГГТУ им. П. О. Сухого, 2024. С. 36.
- 19. Иванов, С. А. Рентгеновские трубки технического назначения / С. А. Иванов, Г. А. Щукин. Л. : Энергоатомиздат, 1989. 200 с.
- 20. Кольчевская, И. Н. Моделирование рентгенооптических систем / И. Н. Кольчевская, П. В. Петров, Н. Н. Кольчевский // Компьютерные технологии и анализ данных (CTDA'2022): материалы III Междунар. науч.-практ. конф., Минск, 21–22 апр. 2022 г. / Белорус. гос. ун-т; редкол.: В. В. Скакун (отв. ред.) [и др.]. –: РИВШ, 2022. С. 217–219.
- 21. Кольчевская, И. Н. Метод цветовой визуализации рентгеновских спектров / И. Н. Кольчевская, Н. Н. Кольчевский // Прикладные проблемы оптики, информатики, радиофизики и физики конденсированного состояния : материалы VII Междунар. науч.-практ. конф., посвящ. 120-летию со дня рождения акад. Антона Никифоровича Севченко, Минск, 18–19 мая 2023 г. / НИУ «Ин-т приклад. физ. проблем им. А. Н. Севченко» БГУ ; редкол.: Ю. И. Дудчик (гл. ред.), И. М. Цикман, И. Н. Кольчевская. 2-я ред., доп. Минск, 2023. С. 35–36.
- 22. Balukho, I. N. Colour visualization method of x-ray spectra / I. N. Balukho, Yu. I. Dudchik, N. N. Kolchevsky // Приборостроение-2023 : материалы 16-й Междунар. науч.-техн. конф., Минск, 16–17 нояб. 2023 г. / редкол.: О. К. Гусев (пред.) [и др.]. Минск : БНТУ, 2023. С. 187–189.

REFERENCES

- 1. Attwood, D. Soft X-rays and extreme ultraviolet radiation: Principles and Applications / D. Attwood. Cambridge: Cambridge University Press, 1999. 470 p.
 - 2. Mishett, A. Optika rientgienovskogo izluchienija / A. Mishett. M.: Mir, 1989. 352 s.
- 3. Kumakhov, M. A. History of the evolution of the x-ray and neutron capillary optics / M. A. Kumakhov // Optics of Beams. 1993. Vol. 1. P. 3–17.
- 4. Carolyn, A. MacDonald. An Introduction to X-ray Physics, Optics, and Applications / MacDonald Carolyn A. United States: Princeton University Press, 2017. 368 p.
- 5. Kurchatovskij spiecializirovannyj istochnik sinkhrotronnogo izluchienija «KISI-Kurchatov» // NIC «Kurchatovskij institut». URL: http://kcsni.nrcki.ru/pages/main/sync/-index.shtml (data obrashchienija: 26.01.2025).
- 6. Sinkhrotron Russkij Istochnik Fotonov («RIF») // NIC «Kurchatovskij institut». URL: http://kcsni.nrcki.ru/pages/main/rsf/index.shtml (data obrashchienija: 26.01.2025).
- 7. ESRF // European Synchrotron Radiation Facility. Francija, 1990–2025. URL: https://esrf.fr/home.html (data obraujenuja: 28.01.2025).
- 8. SPring-8 // Riken SPring-8 Center. Japonija, 1997–2025. URL: http://www.spring8.or.jp/en/ (data obrashchienija: 28.01.2025).
- 9. SOLEIL // Synchrotron SOLEIL. Francija, 2006–2025. URL: https://www.synchrotron-soleil.fr/en (data obrashchienija: 28.01.2025).
- 10. E-XFEL // European XFEL. Giermanija, 2017–2025. URL: https://www.xfel.eu (data obrashchienija: 30.01.2025).

 $\Phi I3IKA$ 55

11. Sibirskij kol'cievoj istochnik fotonov «SKIF» // СКР «SKIF». – URL: https://srf-skif.ru/index.php/СКР_«SKИF»_(pokolienuje_4%2B,_enierhuja_3_HeV) (data obrashchienija: 30.01.2025).

- 12. ESRF-EBS // European Synchrotron Radiation Facility. URL: https://esrf.fr/-cms/live/live/en/sites/www/home/about/upgrade.html (data obrashchienija: 30.01.2025).
- 13. Malomoshchnyje rientgienovskije trubki (sovriemiennoje sostojanije) / A. S. Bugajev, P. A. Jeroshkin, V. A. Roman'ko, Je. P. Sheshin // UFN. 2013. T. 183, № 7. S. 727–740. DOI: 10.3367/UFNr.0183.201307c.0727.
- 14. Patent US 2024/0062985 A1, H01J 35/147 (2019.05). X-ray tube with flexible intensity adjustment: N 20240062985A1: filling date 10.08.2023: publ. date 22.02.2024 / Paul Radcliffe, Christian Hoffmann, Kaan Atak, Carsten Michaelsen; applicant incoatec GmbH. 18 p.
- 15. Patent US 11,116,462B2, A61B 6/03(2006.01), A61B 6/00(2006.01). X-ray system and method for generating x-ray image in color : N_2 11116462B2 : filling date 28.08.2018 : publ. date 14.09.2021 / Nabil Mohammed Maalej, Fahad Ahmad Abozaid ; applicant KING FAHD University of petroleum and minerals. 24 p.
- 16. Patent RU 2645749S2, MPK H01J 35/00 (2006.01). Mikrofokusnaja rientgie-novskaja trubka : № 2645749S2 : zajavlieno 23.05.2016 : opubl. 28.02.2018 / Trubicyn A. A., Grachiov Je. Ju. ; zajavitiel' Fiedier. gos. biudzhet. obrazovat. uchriezhdienije vyssh. obrazovanija «Riazanskij gosudarstviennyj radiotiekhnichieskij univiersitiet». 11 s.
- 17. Patent RU 2578675S1, MPK H01J 35/02 (2006.01). Mnogoluchievaja rientgienov-skaja trubka : N_2 2578675S1 : zajavlieno 28.06.2013 : opubl. 27.03.2016 / Masliennikov O. Ju., Guzilov I. A. ; zajavlitel' Diemidova Je. V. 25 s.
- 18. Balukho, I. N. Broadband X-ray source / I. N. Balukho; scientific supervisor N. N. Kolchevsky // I Miezhdunar. molodiozh. nauch.-kul'tur. forum studientov, magistrantov, aspirantov i molodykh uchionykh: sb. matierialov / M-vo obrazovanija Riesp. Bielarus'; Gomiel. gos. tiekhn. un-t im. P. O. Sukhogo; Taizskij un-t; Nauch. organizacija issliedovanij i innovacij; pod obshch. ried. A. A. Bojko. Gomiel': GGTU im. P. O. Sukhogo, 2024. S. 36.
- 19. Ivanov, S. A. Rientgienovskije trubki tiekhnichieskogo naznachienija / S. A. Ivanov, G. A. Shchukin. L.: Eniergoatomizdat, 1989. 200 s.
- 20. Kol'chievskaja, I. N. Modelirovanije rientgienooptichieskikh sistiem / I. N. Kol'chievskaja, P. V. Pietrov, N. N. Kol'chievskij // Kompjuternyje tiekhnolofii i analiz dannykh (CTDA2022): matierialy III Miezhdunar. nauch.-prakt. konf., Minsk, 21–22 apr. 2022 g. / Bielorus. gos. un-t; riedkol.: V. V. Skakun (otv. ried.) [i dr.]. Minsk: RIVSh, 2022. S. 217–219.
- 21. Kol'chievskaja, I. N Mietod cvietovoj vizualizacii rientgienovskikh spiektrov / I. N. Kol'chievskaja, N. N. Kol'chievskij // Prikladnyje probliemy optiki, informatiki, radiofiziki i fiziki kondiensirovannogo sostojanija : matierialy VII Miezhdunar. nauch.-prakt. konf., posviashch. 120-lietiju so dnia rozhdienija akad. Antona Nikiforovicha Sievchienko, Minsk, 18–19 maja 2023 g. / NIU «In-t priklad. fiz. probliem im. A. N. Sievchienko» BGU; riedkol.: Ju. I. Dudchik (gl. ried.), I. M. Cikman, I. N. Kol'chievskaja. 2-ja ried., dop. Minsk, 2023. S. 35–36.
- 22. Balukho, I. N. Colour visualization method of x-ray spectra / I. N. Balukho, Yu. I. Dudchik, N. N. Kolchevsky // Priborostrojenije-2023 : matierialy 16-j Miezhdunar. nauch.-tiekhn. konf., Minsk, 16–17 nojab. 2023 g. / riedkol.: O. K. Gusiev (pried.) [i dr.]. Minsk : BNTU, 2023. S. 187–189.