ФІЗІКА

УДК 539.12:530.145

DOI 10.63874/2218-0303-2025-1-5-12

Владимир Анестиевич Плетюхов

д-р физ.-мат. наук, проф., проф. каф. общей и теоретической физики Брестского государственного университета имени А. С. Пушкина

Vladimir Pletyukhov

Doctor of Physics and Mathematical Sciences, Professor, Professor of the Department of General and Theoretical Physics of Brest State A. S. Pushkin University e-mail: pletyukhov@yandex.by

ОБОБЩЕННЫЕ РЕЛЯТИВИСТСКИЕ ВОЛНОВЫЕ УРАВНЕНИЯ И БЕЗМАССОВЫЕ ПРЕДЕЛЫ УРАВНЕНИЯ ДИРАКА – КЭЛЕРА

Предложены матричная и тензорная формулировки релятивистских волновых уравнений, обеспечивающих совместное описание электромагнитного поля (фотона) и безмассового поля Кальба — Рамонда с нулевой спиральностью (нотофа). Показано, что эти уравнения являются частными случаями уравнениям Дирака — Кэлера.

Ключевые слова: релятивистские волновые уравнения, уравнение Дирака — Кэлера, поле Кальба — Рамонда, электромагнитное поле, фотон, нотоф.

General Relativistic Wave Equations and Massless Limits of the Dirac - Kähler Equation

Matrix and tensor formulations of the relativistic wave equations providing description both an electromagnetic field (photon) and a massless Kalb – Ramond field with the zero helicity (notoph) are given. It is shown that this equations are particular cases of the Dirac – Kähler equation.

Key words: relativistic wave equations, Dirac – Kähler field, Kalb – Ramond field, electromagnetic field, photon, notoph.

Введение

Подход обобщенной теории релятивистских волновых уравнений (РВУ) исходит из того, что описание микрообъектов (полей) как с ненулевой, так и нулевой массой всегда может быть сведено к системе дифференциальных уравнений первого порядка с постоянными коэффициентами, представимой в матрично-дифференциальной форме [1]

$$(\Gamma \mu \partial \mu + \Gamma_0) \Psi(\mathbf{x}) = 0 \qquad (\mu = 1 \div 4), \tag{1.1}$$

где $\Psi(x)$ — многокомпонентная волновая функция-столбец, преобразующаяся по некоторому приводимому представлению Т полной группы Лоренца; $\Gamma\mu$ и Γ_0 — квадратные матрицы соответствующей размерности.

Матрица Γ_0 в общем случае является проективной ($\Gamma_0^2 = \Gamma_0$). При этом возможны варианты, когда det $\Gamma_0 \neq 0$ и det $\Gamma_0 = 0$ (в том числе $\Gamma_0 = 0$). В первом случае PBУ (1.1) описывает микрообъект с ненулевой массой и умножением на $m\Gamma_0^{-1}$ может быть приведено к виду

$$(\Gamma \mu \partial \mu + mI)\Psi(\mathbf{x}) = 0, \tag{1.2}$$

где m — скалярный параметр, связанный с массой; во втором случае уравнение (1.1) описывает безмассовый микрообъект.

В работах [1–4] были собраны воедино положения, которые в настоящее время составляют так называемый постулативный базис теории обобщенных РВУ.

Перечислим некоторые (основные) из них:

- (1) любое РВУ должно удовлетворять требованиям инвариантности относительно преобразований полной группы Лоренца, а также обеспечивать возможность лагранжевой формулировки теории;
- (2) РВУ, описывающее единый физический объект, должно быть не распадающимся в смысле полной группы Лоренца;
- (3) среди состояний физического микрообъекта не могут присутствовать такие, которым соответствует нулевая плотность энергии;
- (4) «правильное» РВУ должно соответствовать положительно определенной плотности энергии (заряда) в случае целого (полуцелого) спина;
- (5) микрообъект с целым (полуцелым) спином описывается на основе тензорных (спинорных) представлений группы Лоренца;
- (6) если под микрообъектом понимается бесструктурная элементарная частица со спином s, не обладающая иными внутренними степенями свободы, то для построения соответствующего PBУ достаточно ограничиться минимально необходимым набором неприводимых зацепляющихся компонент τ в представлении T, реализующих данное значение спина.

Однако в настоящее время с появлением новых экспериментальных фактов (обнаружение структуры у микрообъектов, ранее считавшихся элементарными, наличие у них дополнительных внутренних (изоспиновых) степеней свободы и др.) некоторые из вышеперечисленных положений теории РВУ, в частности условия (5) и (6), потеряли обязательный характер.

Объектом нашего рассмотрения в настоящей работе будет тензорная полевая система уравнений первого порядка, известная в литературе как уравнение Дирака – Кэлера (ДК) [5], волновая функция которого представляет собой полный набор антисимметричных тензорных полей в пространстве Минковского. Интерес к уравнению ДК на протяжении многих десятилетий связан с рядом специфических свойств, обусловливающих возможность его применения для описания изоспиновых степеней свободы дираковских частиц (частиц со спином $\frac{1}{2}$, например кварков) [5–8]. Основное внимание при этом будет уделено анализу безмассовых пределов уравнения ДК в рамках подхода теории обобщенных РВУ первого порядка.

Основное содержание

В 1962 г. Кэлером [6] в формализме внешних дифференциальных форм было предложено уравнение

$$(d - \delta - m) \Phi = 0, \tag{2.1}$$

где d – внешняя производная; δ = * d *, обозначение * соответствует оператору де Рама, действие которого в пространстве Минковского сводится к свертке тензоров с тензором Леви – Чивита $\varepsilon_{\mu\nu\alpha\beta}$; Φ – неоднородная дифференциальная форма вида

 $\Phi = \varphi + \varphi_{\mu} dx_{\mu} + \frac{1}{2!} \varphi_{[\mu\nu]} dx_{\mu} \Lambda dx_{\nu} + \frac{1}{3!} \varphi_{[\mu\nu\alpha]} dx_{\mu} \Lambda dx_{\nu} \Lambda dx_{\alpha} + \frac{1}{4!} \varphi_{[\mu\nu\alpha\beta]} dx_{\mu} \Lambda dx_{\nu} \Lambda dx_{\alpha} \Lambda dx$, (2.2) и символ Λ означает операцию внешнего произведения.

Тензорный эквивалент уравнения (2.1), (2.2) выглядит так [5; 9]:

$$\partial_{\nu} \varphi_{\lceil \mu \nu \rceil} + \partial_{\mu} \varphi + m \varphi_{\mu} = 0, \tag{2.3}$$

$$\partial_{\nu}\widetilde{\varphi}_{[\mu\nu]} + \partial_{\mu}\widetilde{\varphi} + m\,\widetilde{\varphi}_{\mu} = 0, \tag{2.4}$$

$$-\partial_{\mu}\varphi_{\nu} + \partial_{\nu}\varphi_{\mu} + \varepsilon_{\mu\nu\alpha\beta}\partial_{\alpha}\widetilde{\varphi}_{\beta} + m\varphi_{[\mu\nu]} = 0, \qquad (2.5)$$

$$\partial_{u} \varphi_{u+} m \varphi = 0, \ \partial_{u} \widetilde{\varphi}_{u} + m \widetilde{\varphi} = 0. \tag{2.6}$$

 $\Phi I3IKA$ 7

Здесь используются обозначения

$$\widetilde{\varphi}_{[\mu\nu]} = \frac{1}{2} \; \varepsilon_{\;\mu\nu\alpha\beta} \; \varphi_{[\alpha\beta]}, \quad \widetilde{\varphi}_{\;\mu} = \frac{1}{3!} \; \varepsilon_{\;\mu\nu\alpha\beta} \; \varphi_{[\nu\alpha\beta]}, \quad \widetilde{\varphi} = \frac{1}{4!} \; \varepsilon_{\;\mu\nu\alpha\beta} \; \varphi_{[\mu\nu\alpha\beta]},$$

где лоренцевские коварианты ϕ (скаляр), $\widetilde{\phi}$ (псевдоскаляр), ϕ_{μ} (вектор), $\widetilde{\phi}_{\mu}$ (псевдовектор), $\phi_{[\mu\nu]}$ (антисимметричный тензор второго ранга) сопоставляются неприводимым представлениям полной группы Лоренца (0,0), (0,0)', $(\frac{1}{2},\frac{1}{2})$, $(\frac{1}{2},\frac{1}{2})'$, $(0,1) \oplus (1,0)$ соответственно и образуют схему зацеплений [10]

$$(0,0) \bigoplus (\frac{1}{2},\frac{1}{2}) \bigoplus (0,1) \bigoplus (1,0) \bigoplus (\frac{1}{2},\frac{1}{2})' \bigoplus (0,0)'. \tag{2.7}$$

Матрично-дифференциальная форма тензорной системы (2.3)-(2.6) имеет вид (1.2), где Γ_{μ} – матрицы размерности 16×16 , подчиняющиеся перестановочным соотношениям алгебры Клиффорда – Дирака, $\Psi(x)-16$ -компонентная волновая функция-столбец с компонентами φ , φ_{μ} , $\widetilde{\varphi}_{\mu}$, $\widetilde{\varphi}_{\mu}$, $\widetilde{\varphi}_{\mu}$. С точки зрения стандартной теории PBУ уравнение ДК описывает микрообъект с ненулевой массой и наборов спинов s=0,1. Уникальность этого уравнения состоит в динамической неразличимости поля ДК и системы четырех дираковских полей для всех взаимодействий, не нарушающих внутреннюю симметрию лангранжиана, что означает принципиальную возможность применения уравнения ДК для описания частит со спином $\frac{1}{2}$ и изоспиновыми степенями свободны, имеющими таким образом, геометрическое происхождение.

Безмассовому полу ДК в формализме внешних дифференциальных форм сопоставляется уравнение, которое получается из (2.1) путем предельного перехода $m\rightarrow 0$ (фермионный предел [5]):

$$(d - \delta)\phi = 0. \tag{2.8}$$

Тензорный эквивалент уравнения (2.8) имеет вид

$$\partial_{\nu} \phi_{[\mu\nu]} + \partial_{\mu} \phi = 0, \tag{2.9}$$

$$\partial_{\nu}\widetilde{\varphi}_{[\mu\nu]} + \partial_{\mu}\widetilde{\varphi} = 0, \tag{2.10}$$

$$-\partial_{\mu}\varphi_{\nu} + \partial_{\nu}\varphi_{\mu} + \varepsilon_{\mu\nu\alpha\beta}\partial_{\alpha}\tilde{\varphi}_{\beta} = 0, \qquad (2.11)$$

$$\partial_{\mu}\varphi_{\mu} = 0, \qquad \partial_{\mu}\tilde{\varphi}_{\mu} = 0.$$
 (2.12)

Проведем исследование системы (2.9) – (2.12) на предмет возможности описания на ее основе безмассовых дираковских частиц с внутренними квантовыми числами. Предварительно заметим, что подсистема (2.9), (2.10) известна в литературе [11]; подсистема (2.11), (2.12) также обсуждалась: в работах [12; 13] на ее основе осуществлялась попытка «бозонизации» фермионного поля (но без всякой связи с полем Дирака – Кэлера).

Система (2.9) — (2.12) представляет собой прямую сумму 8-компонентных систем (2.9), (2.10) и (2.11), (2.12), каждая из которых инвариантна относительно преобразований полной группы Лоренца. Они могут быть записаны в матрично-дифференциальной форме соответственно:

$$\Gamma_{\mu}^{(8)} \partial_{\mu} \chi = 0, \ \Gamma_{\mu}^{(8)} \partial_{\mu} \xi = 0,$$
 (2.13)

где $\Gamma_{\mu}^{(8)}$ – матрицы размерности 8×8 , удовлетворяющие алгебре Клиффорда – Дирака; χ и ξ – 8-компонентные волновые функции

$$\chi = \begin{pmatrix} \varphi \\ \tilde{\varphi} \\ \varphi_{[\mu\nu]} \end{pmatrix}, \ \xi = \begin{pmatrix} \varphi_{\mu} \\ \tilde{\varphi}_{\mu} \end{pmatrix}. \tag{2.14}$$

В то же время нетрудно убедиться, что аналогичный предельный переход $m \rightarrow 0$, осуществленный непосредственно в матричном PBУ (1.2), не приведет к прямой сумме двух независимых лоренц-инвариантных тензорных систем дираковского типа для функций χ и ξ . Причиной этого является то обстоятельство, что в случае массивного PBУ волновая функция и само уравнение преобразуются по одному и тому же представлению группы Лоренца; для безмассовых же PBУ указанные представления могут отличаться.

Так, в нашем случае волновая функция χ (2.14) преобразуется по представлению

$$T^{(1)}: (0,0) \oplus (0,0)' \oplus (0,1) \oplus (1,0),$$

а уравнение (2.13), эквивалентное тензорной системе (2.9), (2.10), – по представлению

$$T^{(2)}: (\frac{1}{2}, \frac{1}{2}) \bigoplus (\frac{1}{2}, \frac{1}{2})'.$$

Для функции ξ (2.14) все наоборот: функция преобразуется по представлению $T^{(2)}$, а уравнение (2.13), эквивалентное системе (2.11), (2.12), – по представлению $T^{(1)}$.

Отсюда следует и то что для безмассового релятивистского волнового уравнения, у которого волновая функция и уравнение преобразуются по различным представлениям группы Лоренца, отсутствует массивный аналог. Кроме того, из матриц $\Gamma_{\mu}^{(8)}$ и волновых функций χ , ξ можно построить только лоренц-инвариантные билинейные комбинации типа

$$\bar{\xi}\Gamma_{\mu}^{(1)}\partial_{\mu}\chi, \qquad \bar{\chi}\Gamma_{\mu}^{(2)}\partial_{\mu}\,\,\xi,$$

которые содержат компоненты обеих функций одновременно. Другими словами, несмотря на то, что системы (2.9), (2.10) и (2.11), (2.12) алгебраически независимы, лагранжева формулировка для каждой из них отсутствует. И, следовательно, физически корректная формулировка теории безмассового поля ДК приводит к необходимости совместного рассмотрения этих систем.

Для установления физического содержания системы (2.9) – (2.12) найдем плотность энергии соответствующего безмассового поля. Лагранжиан, из которого может быть получена данная система, с точностью до несущественного слагаемого типа дивергенции имеет вид

$$L = -\varphi_{\mu}\partial_{\mu}\varphi - \frac{1}{2}\varphi_{[\mu\nu]}(\partial_{\mu}\varphi_{\nu} - \partial_{\nu}\varphi_{\mu}) + \tilde{\varphi}_{\mu}\partial_{\mu}\tilde{\varphi} + \frac{1}{2}\varepsilon_{\mu\nu\alpha\beta}\varphi_{[\mu\nu]}\partial_{\alpha}\tilde{\varphi}_{\beta}. \tag{2.15}$$

Отсюда для тензора энергии-импульса

$$T_{\mu\nu} = \frac{\partial L}{\partial (\frac{\partial \varphi_A}{\partial x_\mu})} \frac{\partial \varphi_A}{\partial x_\nu} - L\delta_{\mu\nu}$$
 (2.16)

получаем выражение

$$T_{\mu\nu} = -\varphi_{\mu}\partial_{\nu}\varphi + \tilde{\varphi}_{\mu}\partial_{\nu}\tilde{\varphi} - \varphi_{[\mu\alpha]}\partial_{\alpha}\varphi_{\nu} + \frac{1}{2}\varepsilon_{\mu\alpha\beta\eta}\varphi_{[\alpha\beta]}\partial_{\eta}\varphi_{\nu} + \delta_{\mu\nu}\varphi_{\alpha}\partial_{\alpha}\varphi + \delta_{\mu\nu}\varphi_{[\alpha\beta]} - \delta_{\mu\nu}\tilde{\varphi}_{\alpha}\partial_{\alpha}\tilde{\varphi} - \frac{1}{2}\delta_{\mu\nu}\varepsilon_{\alpha\beta\sigma\eta}\varphi_{[\sigma\eta]}\partial_{\alpha}\tilde{\varphi}_{\beta}.$$
(2.17)

Переписывая (2.17) в импульсивном представлении и используя методику, развитую в [9, с. 182–183], найдем:

$$T_{44} = 0, \ T_{4i} = 0.$$
 (2.18)

 $\Phi I3IKA$ 9

Равенства (2.18) означают, что фермионный безмассовый предел уравнения Дирака – Кэлера приводит к нулевой плотности энергии и импульса, т. е. физического смысла не имеет.

Помимо фермионного безмассового предела (2.9) – (2.12) уравнения ДК представляют интерес тензорные системы

$$\partial_{\nu}\varphi_{[\mu\nu]} + \partial_{\mu}\varphi = 0, \tag{2.19}$$

$$\partial_{\nu}\tilde{\varphi}_{[\mu\nu]} + \partial_{\mu}\tilde{\varphi} = 0, \tag{2.20}$$

$$-\partial_{\mu}\varphi_{\nu} + \partial_{\nu}\varphi_{\mu} + \varepsilon_{\mu\nu\alpha\beta}\partial_{\alpha}\tilde{\varphi}_{\beta} + \varphi_{[\mu\nu]} = 0, \tag{2.21}$$

$$\partial_{\mu}\varphi_{\mu} + \varphi = 0, \qquad \partial_{\mu}\tilde{\varphi}_{\mu} + \tilde{\varphi} = 0$$
 (2.22)

И

$$\partial_{\nu}\varphi_{[\mu\nu]} + \partial_{\mu}\varphi + \varphi_{\mu} = 0, \tag{2.23}$$

$$\partial_{\nu}\tilde{\varphi}_{[\mu\nu]} + \partial_{\mu}\tilde{\varphi} + \tilde{\varphi}_{\mu} = 0, \tag{2.24}$$

$$-\partial_{\mu}\varphi_{\nu} + \partial_{\nu}\varphi_{\mu} + \varepsilon_{\mu\nu\alpha\beta}\partial_{\alpha}\tilde{\varphi}_{\beta} = 0, \qquad (2.25)$$

$$\partial_{\mu}\varphi_{\mu} = 0, \qquad \partial_{\varphi}\varphi_{\varphi} = 0,$$
 (2.26)

которые обычно называют бозонными безмассовыми пределами уравнения ДК. Будучи записанными в стандартной матрично-дифференциальной форме (1.1), эти системы отличаются друг от друга видом проективной матрицы Γ_0 .

В тензорном базисе $\Psi = (\varphi_{\mu}, \tilde{\varphi}_{\mu}, \varphi_{[\mu\nu]}, \varphi, \tilde{\varphi})$ – столбец, матрица Γ_0 имеет вид

$$\Gamma_0 \begin{pmatrix} o_8 & \\ & I_8 \end{pmatrix}$$
(2.27)

для системы (2.19) - (2.22) и

$$\Gamma_0 \begin{pmatrix} I_8 & \\ & o_8 \end{pmatrix}$$
(2.28)

в случае системы (2.23) – (2.26).

Рассмотрим сначала систему (2.19) – (2.22). Прежде всего отметим, что все входящие в нее полевые функции удовлетворяют уравнению Даламбера, т. е. данная система действительно описывает безмассовое поле (или поля). Роль потенциалов здесь выполняют вектор $\varphi_{\mu}(x)$ и псевдовектор $\tilde{\varphi}_{\mu}(x)$; $\varphi_{[\mu\nu]}(x)$ — тензор напряженностей. Обсуждаемая система инвариантна относительно калибровочных преобразований потенциалов

$$\varphi_{\mu} \rightarrow \varphi'_{\mu} = \varphi_{\mu} + \partial_{\mu}\Lambda, \quad \tilde{\varphi}_{\mu} \rightarrow \tilde{\varphi}'_{\mu} = \varphi_{\mu} + \partial_{\mu}\tilde{\Lambda},$$
 (2.29)

где калибровочные функции $\Lambda(x)$, $\tilde{\Lambda}(x)$ удовлетворяют условиям

$$\Box \Lambda(x) = 0, \qquad \Box \tilde{\Lambda}(x) = 0. \tag{2.30}$$

Таким же уравнениям удовлетворяют скалярные функции $\varphi(x)$, $\tilde{\varphi}(x)$, т. е. они играют роль калибровочных полей и никаких физический полей не описывают. В итоге приходим к заключению, что система (2.19) – (2.22) описывает безмассовое векторное поле с двукратным вырождением состояний, частным случаем которого является обычное электромагнитное поле.

В системе (2.23) – (2.26) роль потенциалов выполняют величины φ_0 , $\tilde{\varphi}_0$, $\varphi_{[\mu\nu]}$, а в качестве напряженностей выступают вектор φ_μ и псевдовектор $\tilde{\varphi}_\mu$. При этом

уравнения (2.23), (2.24) являются определениями напряженностей через потенциалы, а (2.25), (2.26) — уравнениями движения. Как и в предыдущем случае, нетрудно убедиться, что все полевые функции системы (2.23) — (2.26) удовлетворяют уравнению Даламбера, т. е. данная система также описывает безмассовое поле.

Для выяснения физического смысла этой системы учтем, что она инвариантна относительно калибровочных преобразований

$$\varphi_{[\mu\nu]} \to \varphi'_{[\mu\nu]} = \varphi_{[\mu\nu]} + \partial_{\mu}\Lambda_{\nu}(x) - \partial_{\nu}\Lambda_{\mu}(x),
\tilde{\varphi}_{[\mu\nu]} \to \tilde{\varphi}'_{[\mu\nu]} = \tilde{\varphi}_{[\mu\nu]} + \partial_{\mu}\tilde{\Lambda}_{\nu}(x) - \partial_{\nu}\tilde{\Lambda}_{\mu}(x),
\varphi \to \varphi' = \varphi + \Lambda(x), \quad \tilde{\varphi} \to \tilde{\varphi}' = \tilde{\varphi} + \tilde{\Lambda}(x),$$
(2.31)

где калибровочные функции $\Lambda_{\mu}(x)$, $\tilde{\Lambda}_{\mu}$, $\Lambda(x)$, $\tilde{\Lambda}(x)$ должны удовлетворять условиям:

$$\Box \Lambda_{\mu}(x) - \partial_{\mu}\partial_{\nu}\Lambda_{\nu}(x) + \partial_{\mu}\Lambda(x) = 0,$$

$$\Box \tilde{\Lambda}_{\mu}(x) - \partial_{\mu}\partial_{\nu}\tilde{\Lambda}_{\nu}(x) + \partial_{\mu}\tilde{\Lambda}(x) = 0.$$
(2.32)

Калибровочные преобразования (2.31), (2.32) приводят к тому, что из восьми полевых величин $\varphi_{[\mu\nu]}$ ($\tilde{\varphi}_{[\mu\nu]}$), φ , $\tilde{\varphi}$ независимыми являются только две составляющие тензор-потенциала $\varphi_{[\mu\nu]}$ ($\tilde{\varphi}_{[\mu\nu]}$) и величины φ , $\tilde{\varphi}$, описывающие соответственно скалярное и псевдоскалярное безмассовые поля [9, стр. 177–180].

Согласно [14] компоненты тензор-потенциала соответствуют состояниям безмассовых векторного (поле Кальба – Рамонда [15]) и псевдовекторного (нотоф Огиевецкого – Полубаринова[16]) полей с продольной поляризацией, но переносящих во взаимодействиях спин 1. С учетом этого можно сделать вывод: тензорная система (2.23) – (2.26) описывает объединенное поле Кальба – Рамонда – Огиевецкого – Полубаринова и безмассовое скалярное поле с удвоенным набором состояний (скалярное плюс псевдоскалярное) как единый физический микрообъект.

Заключение

Рассмотрены три безмассовых предела уравнения Дирака — Кэлера: фермионный, соответствующий выбору матрицы $\Gamma_0 = 0$ в уравнении (1.1), и два бозонных, при которых матрица Γ_0 имеет вид (2.27) или (2.28). Использовались тензорный формализм и подход теории обобщенных РВУ первого порядка.

Показано, что фермионный предел приводит к нулевой плотности энергии и импульса, т. е. никакому реальному физическому полю не соответствует.

Бозонный предел с матрицей Γ_0 (2.28) (тензорная система (2.23) – (2.26)) дает совместное описание поля Кальба – Рамонда и нотофа Огиевецкого – Полубаринова, а также скалярного и псевдоскалярного полей. В работе [15] тензор-потенциал $\varphi[\mu\nu]$ трактуется в качестве потенциала поля, описывающего взаимодействие замкнутых струн в пространстве размерности d=4. В [16] безмассовое псевдоскалярное поле $\tilde{\varphi}$ передает взаимодействие между мембранами второго порядка. В русле этих трактовок логично интерпретировать тензорную систему (2.23) – (2.26) в качестве феноменологической модели для описания полей, осуществляющих взаимодействие замкнутых струн и мембран в пространстве d=4.

В случае открытых струн одной только системы (2.23) – (2.26) недостаточно. Взаимодействие концов открытых струн естественно описывать посредством электромагнитного поля. В качестве подходящей для этой цели модели может служить тензорная система (2.19) – (2.22) – безмассовый предел уравнения ДК с матрицей Γ_0 (2.27), т. е. тензорная система (2.19) – (2.22).

 Φ I3IKA 11

Таким образом, предлагаемая трактовка бозонных безмассовых пределов уравнения Дирака — Кэлера дает ключ к пониманию физического смысла этого уравнения: в безмассовом варианте оно может выступать в качестве феноменологической модели для описания взаимодействий заряженных микрообъектов, геометрическим образом которых является не точка, а струна.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Федоров, Ф. И. Обобщенные релятивистские волновые уравнения / Ф. И. Федоров // Доклады АН СССР. 1952. Т. 82, № 1. С. 37–40.
- 2. Bhabha, H. J. Relativistic wave equations for the elementary particles / H. J. Bhabha // Rev. Mod. Phys. -1945. Vol. 17, nr 2-3. P. 200–216.
- 3. Bhabha, H. J. On the postulational basis of the theory of elementary particles / H. J. Bhabha // Rev. Mod. Phys. 1949. Vol. 21, nr 3. P. 451–462.
- 4. Harish-Chandra. Relativistic equations for elementary particles / Harish-Chandra // Proc. Roy. Soc. 1948. Vol. A192. P. 195–218.
- 5. Стражев, В. И. Уравнение Дирака Кэлера. Классическое поле / В. И. Стражев, И. А. Сатиков, Д. А. Ционенко. Минск : БГУ, 2007. 195 с.
- 6. Kähler, E. Der innere differentialkalkul / E. Kähler // Rendiconti di Mat. (Roma). 1962. Ser. S. Vol. 21, nr 3–4. P. 343–361.
- 7. Darwin, C. G. The wave equation of the electron / C. G. Darvin // Proc. Roy. Soc. A. 1928. Vol. 118. P. 654–680.
- 8. Боргардт, А. А. Матричные аспекты теории бозонов / А. А. Боргард // ЖЭТФ. 1956. Т. 30, № 2. С. 334–341.
- 9. Плетюхов, В. А. Релятивистские волновые уравнения и внутренние степени свободы / В. А. Плетюхов, В. М. Редьков, В. И. Стражев. Минск : Беларус. навука, 2015.-326 с.
- 10. Плетюхов, В. А. К теории частиц с максимальным спином 1 / В. А. Плетюхов, В. И. Стражев // Весці АН БССР, Сер. фіз.-мат. навук. 1983. № 5. С. 94–98.
- 11. Стражев, В. И. О группе симметрии обобщенных уравнений векторного поля / В. И. Стражев // Изв. вузов СССР. Физика. -1977. -№ 8. C. 45–48.
- 12. Garbaczewski, P. Quantization of spinor fields. Meaning of «bosonization» in 1+1 and 1+3 dimension / P. Garbaczewski // J. Math. Phys. -1982. Vol. 23, nr 3- P. 442-450.
- 13. Aratyn, H. A Bose representation for the massless Dirac field in four dimensions / H. Aratyn // Nucl. Phys. 1983. Vol. B227, nr 1. P. 172–188.
- 14. Огиевецкий, В. И. Нотоф и его возможные взаимодействия / В. И. Огиевецкий, И. В. Полубаринов // Я Φ . 1966. Т. 4. вып. 1. С. 216–223.
- 15. Kalb, M. Classical direct interesting action / M. Kalb, P. Ramond // Phys. Rev. D. 1974. Vol. 9, nr 8. P. 2273–2284.
- 16. Aurilia, A. Generalized Maxwell equations and the gauge mixing mechanism of mass generation / A. Aurilia, Y. Takahashi // Progr. Theor. Phys. 1981. Vol. 66. P. 693–712.

REFERENCES

- 1. Fiodorov, F. I. Obobshchionnyje rieliativistskije volnovyje uravnienija / F. I. Fiodorov // Doklady AN SSSR. − 1952. − T. 82, № 1. − S. 37–40.
- 2. Bhabha, H. J. Relativistic wave equations for the elementary particles / H. J. Bhabha // Rev. Mod. Phys. -1945. Vol. 17, nr 2-3. P. 200–216.
- 3. Bhabha, H. J. On the postulational basis of the theory of elementary particles / H. J. Bhabha // Rev. Mod. Phys. 1949. Vol. 21, nr 3. P. 451–462.

- 4. Harish-Chandra. Relativistic equations for elementary particles / Harish-Chandra // Proc. Roy. Soc. 1948. Vol. A192. P. 195–218.
- 5. Strazhev, V. I. Uravnienije Diraka Keliera. Klassichieskoje polie / V. I. Strazhev, I. A. Satikov, D. A. Cionienko. Minsk : BGU, 2007. 195 s.
- 6. Kähler, E. Der innere differentialkalkul / E. Kähler // Rendiconti di Mat. (Roma). 1962. Ser. S. Vol. 21, nr 3–4. P. 343–361.
- 7. Darwin, C. G. The wave equation of the electron / C. G. Darvin // Proc. Roy. Soc. A. 1928. Vol. 118. P. 654–680.
- 8. Borgardt, A. A. Matrichnyje aspiekty tieorii bozonov / A. A. Borgard // ZhETF. 1956. T. 30, № 2. S. 334–341.
- 9. Plietiukhov, V. A. Rieliativistskije volnovyje uravnienija i vnutriennije stiepieni svobody / V. A. Plietiukhov, V. M. Ried'kov, V. I. Strazhev. Minsk : Bielarus. navuka, 2015. 326 s.
- 10. Plietiukhov, V. A. K tieorii chastic s maksimal'nym spinom 1 / V. A. Plietiukhov, V. I. Strazhev // Viesci AN BSSR, Cier. fiz.-mat. navuk. − 1983. − № 5. − S. 94–98.
- 11. Strazhev, V. I. O gruppie simmietrii obobshchionnykh uravnienij viektornogo polia / V. I. Strazhev // Izv. vuzov SSSR. Fizika. − 1977. − № 8. − S. 45–48.
- 12. Garbaczewski, P. Quantization of spinor fields. Meaning of «bosonization» in 1+1 and 1+3 dimension / P. Garbaczewski // J. Math. Phys. 1982. Vol. 23, nr 3 P. 442–450.
- 13. Aratyn, H. A Bose representation for the massless Dirac field in four dimensions / H. Aratyn // Nucl. Phys. 1983. Vol. B227, nr 1. P. 172–188.
- 14. Ogijevieckij, V. I. Notof и jego vozmozhnyje vzaimodiejstvija / V. I. Ogijevieckij, I. V. Polubarinov // JAF. 1966. Т. 4. vyp. 1. S. 216–223.
- 15. Kalb, M. Classical direct interesting action / M. Kalb, P. Ramond // Phys. Rev. D. 1974. Vol. 9, nr 8. P. 2273–2284.
- 16. Aurilia, A. Generalized Maxwell equations and the gauge mixing mechanism of mass generation / A. Aurilia, Y. Takahashi // Progr. Theor. Phys. 1981. Vol. 66. P. 693–712.

Рукапіс паступіў у рэдакцыю 07.04.2025