такая, что G_i нормальна в группе G и фактор-группа G_i / G_{i-1} изоморфна силовской p_i -подгруппе G_{p_i} из G для всех i .

Группа называется сверхразрешимой, если порядки ее главных факторов являются простыми числами. Через $\mathfrak U$ обозначим класс всех сверхразрешимых групп. Группа с нормальной силовской p-подгруппой называется p-замкнутой, а группа с нормальной p'-холловой подгруппой называется p-нильпотентной.

- **Лемма 2.1** [9, теорема 1, предложения 1-2]. Пусть G = AB произведение tcc-перестановочных подгрупп A и B. Тогда для минимальной нормальной подгруппы N группы G справедливы следующие утверждения:
 - (1) $\{A \cap N, B \cap N\} \subseteq \{1, N\}$;
 - (2) если $N \le A \cap B$ или $N \cap A = N \cap B = 1$, то |N| = p, где p простое число.
- **Лемма 2.2** [10, теорема 4]. Пусть G = AB является произведением tcc-перестановочных подгрупп A и B. Тогда $[A,B] \le F(G)$.
- **Лемма 2.3** [11, лемма 6]. Предположим, что разрешимая группа $G \notin \mathfrak{U}$, но фактор-группа $G/K \in \mathfrak{U}$ для каждой неединичной нормальной в G подгруппы K. Тогда справедливы следующие утверждения:
 - (1) $Z(G) = O_{p'}(G) = \Phi(G) = 1$;
- (2) группа G содержит единственную минимальную нормальную подгруппу N , $N = F(G) = O_p(G) = C_G(N)$ для некоторого $p \in \pi(G)$;
- (3) G примитивная группа; G = [N]M, где M максимальная подгруппа в группе G с единичным ядром;
 - (4) N элементарная абелева подгруппа порядка p^n , n > 1;
 - (5) если V подгруппа группы G и G = VN, то $V = M^x$ для некоторого $x \in G$.

Из леммы 2.3 легко получается следующая

Лемма 2.4 [12]. Пусть G — минимальная несверхразрешимая группа. Тогда справедливы следующие утверждения:

- (1) G разрешима $u |\pi(G)| \leq 3$;
- (2) G имеет единственную нормальную силовскую подгруппу P и $P = G^{\mathfrak{U}}$;
- $(3)\ P/\Phi(P)$ минимальная нормальная подгруппа в $G/\Phi(P)$ и $\left|P/\Phi(P)\right| > p$;
- (4) если Q дополнение κ P ϵ G , то $Q/Q \cap \Phi(G)$ либо примарная циклическая группа, либо минимальная неабелева группа;
- (5) если $|\pi(Q)| = 2$, то Q нециклическая группа c циклическими силовскими подгруппами.
- (6) если G не является группой Шмидта, то G имеет силовскую башню сверхразрешимого типа.

Приведем некоторые свойства tcc-подгрупп.

Лемма 2.5 Пусть A-tcc-noдгруппа группы G и Y-tcc-добавление κ A ε G . Тогда справедливы следующие утверждения:

(1) A-tcc-noдгруппа в H для каждой подгруппы H группы G такой, что $A \leq H$;

- (2) AN/N tcc-nodгруппа в G/N для каждой нормальной подгруппы N группы G ;
- (3) для каждой нормальной подгруппы A_1 группы A и $X \leq Y$ существует $y \in Y$ такой, что $A_1 X^y \leq G$. В частности, $A_1 M \leq G$ для некоторой максимальной подгруппы M группы Y и $A_1 H \leq G$ для некоторой π -холловой подгруппы H разрешимой группы Y и любого $\pi \subseteq \pi(G)$;
- (4) $A_1K \leq G$ для каждой субнормальной подгруппы K в Y и для каждой нормальной подгруппы A_1 группы A_2 ;
- (5) если T нормальная подгруппа в G такая, что $T \le A$ и $T \cap Y = 1$, то T_1 нормальная подгруппа в G для каждой нормальной подгруппы T_1 группы A такой, что $T_1 \le T$;
- (6) если T нормальная подгруппа в G такая, что $T \cap A = 1$ и $T \leq Y$, то $A_1 \leq N_G\left(T_1\right)$ для каждой нормальной подгруппы T_1 группы T и для каждой нормальной подгруппы A_1 группы A_2 группы A_3 группы A_4 группы A_4
- (7) A^x tcc-noдгруппа группы G и Y^x tcc-добавление κ A^x в G для любого $x \in G$.

Доказательство.

- 1. Т. к. Y tcc-добавление к A в G, то G = AY, A и Y tcc-перестановочные подгруппы из G. По тождеству Дедекинда $H = H \cap AY = A(H \cap Y)$. Т. к. $H \cap Y \leq Y$, то для любых $X \leq A$ и $Z \leq H \cap Y$ существует элемент $u \in \langle X, Z \rangle$ такой, что $XZ^u \leq G$. Поэтому A и $H \cap Y$ tcc-перестановочны и, значит, A tcc-подгруппа в H.
- 2. Т. к. G = AY, то G/N = (AN/N)(YN/N). Пусть B/N произвольная подгруппа из AN/N и X/N произвольная подгруппа в YN/N. Т. к. $N \le B \le AN$, то по тождеству Дедекинда $B = B \cap AN = (B \cap A)N$.

Аналогично $X=X\cap YN=ig(X\cap Yig)N$. Т. к. $B\cap A\leq A$ и $X\cap Y\leq Y$, то $ig(B\cap Aig)(X\cap Y)^u\leq G$ для некоторого $u\in \langle B\cap A, X\cap Y\rangle$. Поэтому

$$(B/N)(X/N)^{uN} = (B \cap A)(X \cap Y)^{u} N/N \leq G/N$$

ДЛЯ

$$uN \in \langle B \cap A, X \cap Y \rangle N / N \subseteq \langle B, X \rangle N / N = \langle B / N, X / N \rangle$$
.

Значит, AN/N – tcc-подгруппа в G/N.

3. Т. к. A — tcc-подгруппа группы G, то по определению для каждой нормальной подгруппы $A_{\rm l}$ группы A и $X \leq Y$ существует $u \in \langle A_{\rm l} X \rangle$ такой, что $A_{\rm l} X^u \leq G$. Т. к. $u \in G = AY = YA$, то u = ya для некоторых $y \in Y$ и $a \in A$. Тогда

$$A_1X^u = A_1X^{ya} = A_1(X^y)^a = A_1^a(X^y)^a = (A_1X^y)^a \le G.$$

Поэтому существует подгруппа $A_{\!\scriptscriptstyle I} X^{\scriptscriptstyle y}$ в группе G для некоторого $y \in Y$. Очевидно, что если $X-\pi$ -холлова подгруппа группы Y, то $H=X^{\scriptscriptstyle y}-\pi$ -холлова подгруппа группы Y. Поэтому $A_{\!\scriptscriptstyle I} H \leq G$. Аналогично и в случае, когда X- максимальная подгруппа группы Y. Тогда $M=X^{\scriptscriptstyle y}-$ максимальная подгруппа группы Y и $A_{\!\scriptscriptstyle I} M \leq G$.

4. Поскольку K субнормальная подгруппа в Y, то существует цепь подгрупп

$$Y = K_0 \ge K_1 \ge ... \ge K_{n-1} \ge K_n = K$$
,

в которой подгруппа K_{i+1} нормальна в K_i для всех i. Применим индукцию по n. По п. (3) существует $y \in Y$ такой, что $A_1K_1^y = A_1K_1 \le G$. Поэтому утверждение справедливо для n=0 и n=1. Значит, $n \ge 2$. Согласно п. (1) A — tcc-подгруппа в AK_1 и K_1 — tcc-добавление к A в AK_1 . Т. к. длина субнормальной цепи между K и K_1 меньше, чем n, то по индукции в группе AK_1 существует подгруппа A_1K , а следовательно, $A_1K \le G$.

- 5. По п. 3 в группе G существует подгруппа T_1Y . Т. к. $T_1=T\cap T_1Y$ нормальна в T_1Y , то $Y\leq N_G\left(T_1\right)$ и T_1 нормальна в G=AY .
- 6. Т. к. T_1 субнормальна в Y, то по п. 4 в группе G существует подгруппа $A_1T_1 \leq G$ каждой нормальной подгруппы A_1 группы A. Т. к. $T_1 = T \cap A_1T_1$ нормальна в A_1T_1 , то $A_1 \leq N_G$ T_1 .
- 7. Т. к. AY = G, то $A^xY^x = G$. Пусть $K \le A^x$, $L \le Y^x$. Тогда $K^{x^{-1}} \le A$, $L^{x^{-1}} \le Y$ и существует $u \in \langle K^{x^{-1}}, L^{x^{-1}} \rangle$ такой, что $K^{x^{-1}}(L^{x^{-1}})^u \le G$. Т. к.

$$\langle K^{x^{-1}}, L^{x^{-1}} \rangle = \langle K, L \rangle^{x^{-1}},$$

то существует $v \in \langle K, L \rangle$ такой, что $u = v^{x^{-1}}$.

Поскольку $x^{-1}u = vx^{-1}$, то

$$K^{x^{-1}}(L^{x^{-1}})^u = K^{x^{-1}}L^{vx^{-1}} = (KL^v)^{x^{-1}}.$$

Поэтому $\mathit{KL}^{\mathit{v}} \leq G$. Следовательно, A^{x} — tcc-подгруппа группы G и Y^{x} — ее tcc-добавление в G . Лемма доказана.

2. Доказательство основного результата

1. Предположим, что лемма неверна и пусть G — контрпример минимального порядка. Пусть N — неединичная нормальная в G подгруппа и M/N — максимальная подгруппа G/N. Тогда M — максимальная подгруппа в G и по лемме 2.5 (2) все фактор-группы G/N наследуют условия теоремы. Поэтому G/N сверхразрешима.

Пусть H — максимальная подгруппа и Y — ее tcc-добавление в G . Если $F(G) \neq 1$, то G разрешима. Поэтому F(G) = 1 и по лемме $2.2 \ Y \leq C_G(H)$. Тогда H нормальна в G и |G:H| — простое число. Т. к. H — произвольная максимальная подгруппа в G , то группа G сверхразрешима, а следовательно, разрешима.

По лемме 2.3 в G существует единственная минимальная нормальная подгруппа N такая, что

$$N = C_G(N) = O_p(G) = F(G)$$

для некоторого $p \in \pi(G)$, N — элементарная абелева подгруппа порядка p^n , n > 1, $G = \lceil N \rceil T$, где T — некоторая максимальная подгруппа группы G.

Пусть U — tcc-добавление к T в G . По лемме 2.1 $N \leq U$. Т. к. N — элементарная абелева p-подгруппа, выберем нормальную подгруппу N_1 в N такую, что $\left|N_1\right|=p$. Тогда по лемме 2.5 (6) $T \leq N_G\left(N_1\right)$. Поскольку N_1 нормальна в N , то N_1 нормальна в $G=\left[N\right]T$ и $N=N_1$. Противоречие. Лемма доказана.

2. Предположим, что теорема неверна и пусть G — контрпример минимального порядка. По лемме 2.5 (1) и по теореме 3.1 каждая максимальная подгруппа M будет сверхразрешимой. Поэтому G — минимальная несверхразрешимая группа и применима лемма 2.4. Тогда группа G разрешима, $|\pi(G)| \le 3$ и имеет единственную нормальную силовскую подгруппу $P = G^{\mathfrak{U}}$. Очевидно, что $\Phi(G) = 1$. Поэтому P — минимальная нормальная подгруппа порядка p^n , n > 1 и G = [P]M, где M — некоторая максимальная подгруппа группы G.

Если $|\pi(G)|=3$, то G имеет силовскую башню сверхразрешимого типа и M=[T]R, где |T|=t, |R|=r, $t,r\in\pi(G)$. Подгруппы T и R являются 2-максимальными подгруппами группы G. Тогда по условию $TY_1=G=RY_2$, где Y_1 и Y_2 — их tcc-добавления в G. Кроме того, $P\leq Y_1$ и $P\leq Y_2$. Пусть P_1 — минимальная нормальная подгруппа в P. Тогда по лемме 2.5 (6) $T\leq N_G\left(P_1\right)$ и $R\leq N_G\left(P_1\right)$. Тогда P_1 нормальна в G=PM=PTR, противоречие.

Таким образом, $|\pi(G)|=2$. Тогда M-q-группа. Если |M|>q, то существует в M максимальная подгруппа M_1 такая, что $M_1\ne 1$. Очевидно, что $H=[P]M_1$ — максимальная подгруппа в G . Т. к. H сверхразрешима, то в H существует максимальная подгруппа H_1 такая, что $M_1\le H_1$ и $|H:H_1|=p$. По условию подгруппа H_1 — tcc-подгруппа группы G . Тогда $H_1V=G$, где V — ее tcc-добавление в G . По лемме 2.1 $P\le V$ и $P\cap H_1=1$. Тогда по тождеству Дедекинда

$$H_1 = H_1 \cap PM_1 = (H_1 \cap P)M_1 = M_1$$
.

Поэтому |P| = p. Противоречие.

Значит, |M|=q и P — максимальная подгруппа. Пусть P_1 — максимальная подгруппа в P . Тогда по условию $P_1K=G$, где K — tcc-добавление к P_1 в G . По лемме 2.1 $P \le K$ и $P \cap P_1 = 1$, что возможно только при |P|=p . Противоречие. Теорема доказана.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Монахов, В. С. Введение в теорию конечных групп и их классов / В. С. Монахов. Минск : Выш. шк., 2006. 320 с.
- 2. Huppert, B. Endliche Gruppen I / B. Huppert. Berlin ; Heidelberg ; New York : Springer. 1967.
- 3. Huppert, B. Normalteiler und maximale Untergruppen endlicher Gruppen / B. Huppert // Math. Zeitschr. 1954. Vol. 60. P. 409–434.
- 4. Weinstein, M. Between Nilpotent and Solvable / M. Weinstein. Passaic : Polygonal Publishen House, 1982.
- 5. Поляков, Л. Я. Конечные группы с перестановочными подгруппами / Л. Я. Поляков // Конечные группы : сб. Минск : Наука и техника, 1966. С. 75–88.
- 6. Mann, A. Finite groups whose n-maximal subgroups are subnormal / A. Mann // Trans. Amer. Math. Soc. 1968. Vol. 132. P. 395–409.
- 7. Ковалева, В. А. Конечные группы с заданными обобщенно максимальными подгруппами (обзор). І. Конечные группы с обобщеннонормальными *п*-максимальными подгруппами / В. А. Ковалева // ПФМТ. 2016. Т. 29, № 4. С. 48–58.
- 8. Guo, W. Criterions of supersolubility for products of supersoluble groups / W. Guo, K. P. Shum, A. N. Skiba // Publ. Math. Debrecen. 2006. Vol. 68, № 3–4. P. 433–449.
- 9. Guo, W. Conditionally Permutable Subgroups and Supersolubility of Finite Groups / W. Guo, K. P. Shum, A. N. Skiba // SEAMS Bull. Math. 2004. Vol. 29, № 2. P. 240–254.
- 10. Arroyo-Jorda, M. Conditional permutability of subgroups and certain classes of groups / M. Arroyo-Jorda, P. Arroyo-Jorda // Journal of Algebra. 2017. Vol. 476. P. 395–414.
- 11. On conditional permutability and factorized groups / M. Arroyo-Jorda [et al.] // Annali di Matematica Pura ed Applicata. 2014. Vol. 193. P. 1123–1138.
- 12. Monakhov, V. S. On the supersoluble residual of a product of subnormal supersoluble subgroups / V. S. Monakhov, I. K. Chirik // Siberian Math. J. -2017. Vol. 58, N_{2} 2. P. 271–280.
- 13. Doerk, K. Minimal nicht überauflösbare, endliche gruppen / K. Doerk // Math. Zeitschrift. 1966. Vol. 91. P. 198–205.

Рукапіс паступіў у рэдакцыю 07.10.2019

$\it Trofimuk~A.~A.,~Lukyanenko~V.~O.$ On the Supersolubility of a Group with Given Conditions of Permutability of Maximal Subgroups

A subgroup A of a group G is called tcc-subgroup of G, if there is a subgroup T of G such that G = AT and for any $X \le A$ and for any $Y \le T$ there exists an element $u \in \langle X, Y \rangle$ such that $XY^u \le G$. In present paper the supersolubility of a group G is obtained in each of the following cases: all maximal subgroups of G are tcc-subgroups in G; all 2-maximal subgroups of G are tcc-subgroups in G.

УДК 513.82

A. A. Юдов¹, E. B. Кисилюк²

¹канд. физ.-мат. наук, доц.

доц. каф. алгебры, геометрии и математического моделирования Брестского государственного университета имени А. С. Пушкина ²магистрант физико-математического факультета Брестского государственного университета имени А. С. Пушкина e-mail: modelmath@brsu.brest.by

МЕТОД ПОСТРОЕНИЯ КАНОНИЧЕСКОГО РИПЕРА ПОДМНОГООБРАЗИЯ ОДНОРОДНОГО ПРОСТРАНСТВА

Изучаются подмногообразия однородного пространства, описывается построение канонического рипера подмногообразия однородного пространства и строится вычислительный аппарат метода построения канонического рипера. Подмногообразие исследуется локально.

1. Построение инвариантного продолжения подмногообразия однородного пространства в структурную группу Ли и в алгебру Ли

Пусть G — группа Ли, H — ее замкнутая подгруппа Ли, M = G/H — однородное G -пространство,

$$\pi: G \to G/H: a \to aH - \tag{1}$$

каноническая проекция.

Группа G действует в M с помощью левых сдвигов:

$$G \times M \to M : (a, bH) \to abH = a \cdot bH = T_a(bH).$$
 (2)

Определение: *Подмногообразием* размерности n однородного пространства M будем называть пару (D_0,f) , где D_0 – окрестность нуля евклидова пространства R_n,f – аналитическое вложение D_0 в M .

Таким образом, подмногообразия однородного пространства изучаются локально. Теория построения канонического репера подмногообразия подробно описана в работе [4]. Ниже излагаются идеи работы [4] и строится канонический лифт подмногообразия однородного пространства в структурную группу Ли и в алгебру Ли.

Предположим, что $f(0)=\pi(e)$. В противном случае, если $f(0)=\pi(a)\neq\pi(e)$, от подмногообразия (D_0,f) перейдем к ему эквивалентному $(D_0,T_{a^{-1}}\circ f)$. Пусть $\dim G=r$, $\dim H=s$, тогда $\dim M=r-s=m$.

Рассмотрим пространство Γ_1 всех касательных к M n-мерных подпространств. Действие группы G на M продолжается в действии на Γ_1 , на котором группа G будет действовать с помощью дифференциалов левых сдвигов пространства M :

$$G \times \Gamma_1 \to \Gamma_1 : (a, K) \to dT_a(K) = a \circ K.$$
 (3)

При этом Γ_1 становится G -пространством, но необязательно однородным. Наряду с G -пространством Γ_1 будем рассматривать его подмножество Q_1 , состоящее из n-мерных подпространств, касательных к M в точке $\pi(e)$. Q_1 будет H -пространством, тоже необязательно однородным. Между H -орбитами множества Q_1 и G -орбитами множества Γ_1 существует естественное взаимно-однозначное соответствие. Далее будем рассматривать G -орбиты пространства Γ_1 . Каждой такой орбите будет сопоставляться класс n-мерных подмногообразий пространства M, такой, что

все касательные подпространства подмногообразия этого класса попадут в данную орбиту (по крайней мере, в некоторой окрестности). Предположим, что подмногообразие (D_0, f) принадлежит классу с орбитой $O(K_1) = \{a \circ K_1 \mid a \in G\}$, где $K_1 = T_{f(0)}(\operatorname{Im} f)$, $\operatorname{Im} f = f(D_0)$. Пусть H_1 – группа стационарности элемента K_1 :

$$H_1 = \{ a \in G \mid a \circ K_1 = K_1 \}.$$

Приведем основные факты теории вычислительного аппарата метода построения канонического репера.

Рассмотрим множество Q_1 всех n-мерных подпространств, касательных к M в точке $\pi(e)$. Наряду с множеством Q_1 рассмотрим множество

$$Z_1 = \{ d\pi_e^{-1}(K) | K \in Q_1 \}.$$

Множество Q_1 является H -пространством. Множество Z_1 также является H -пространством, причем действие группы H в Z_1 индуцируется присоединенным представлением Ad . H -пространства Q_1 и Z_1 изоморфны. Отсюда, в частности, следует, что

$$H_1 = \{ a \in H | Ada(K'_1) = K'_1 \}, \tag{4}$$

где $K'_1 = d\pi_e^{-1}(K_1)$.

Пусть $\left\{\omega^{1},\omega^{2},...,\omega^{r}\right\}$ — базис пространства \overline{G}^{*} дуального к алгебре Ли \overline{G} группы Ли G, $\left\{\omega^{1},\omega^{2},...,\omega^{t}\right\}$ — базис пространства $K_{1}^{\prime *}$, дуального к K_{1}^{\prime} , $\left\{\omega^{1},\omega^{2},...,\omega^{5}\right\}$ — базис пространства \overline{H}^{*} , дуального к \overline{H} . При этом t=s+n. Тогда система Пфаффа, определяющая пространство K_{1}^{\prime} , будет иметь вид:

$$\omega^{t+1} = 0, \ \omega^{t+2} = 0, ..., \ \omega^r = 0.$$
 (5)

Найдем внешние дифференциалы форм системы (5):

$$d\omega^{t+1} = 0, \ d\omega^{t+2} = 0, ..., \ d\omega^{r} = 0.$$
 (6)

Введем индексы суммирования: i,j=1,2,...,r; $\sigma,\tau=s+1,s+2,...,r$; $\varepsilon,\mu=t+1,t+2,...,r$; $a,b,c=1,2,...,s_1$; $\alpha,\beta,\gamma=1,2,...,t$; $p,q,l=s_1+1,s_1+2,...,s$; $\rho,\delta=s+1,s+2,...,t$.

Разложим внешние дифференциалы (6) по базису:

$$d\omega^{t+1} = \Lambda_{ii}^{t+1} \omega^i \wedge \omega^j, ..., \Lambda_{ii}^r \omega^i \wedge \omega^j. \tag{7}$$

Предположим, что подмногообразие (D_0,f) продолжается в пространство M=G/H и $f_1:D_0\to M_1$ — соответствующее продолжение, $K_1=T_{f(0)}(\operatorname{Im} f)$, $K_1'=d\pi_e^{-1}(K_1),\ K_2=T_{f_1(0)}(\operatorname{Im} f_1),\ K_2'=d\pi_{l|e}^{-1}(K_2).$

Лемма 1 [4]. В формулах (7) равны нулю коэффициенты $\Lambda^{t+1}_{a\alpha}...\Lambda^{r}_{a\alpha}$; $\Lambda^{t+1}_{p,q},...,\Lambda^{r}_{p,q}$. Следствие 1. Система форм

$$\begin{cases}
\omega^{t+1} = 0, ..., \omega^{r} = 0; \\
d\omega^{t+1} = 0, ..., d\omega^{r} = 0
\end{cases}$$
(8)

эквивалентна системе

$$\omega^{t+1} = 0,..., \omega^r = 0;$$
 (a)
 $\omega^p \wedge \theta^{t+1}_p = 0,..., \omega^p \wedge \theta^r_p = 0.$ (6)

Пусть H_1 – алгебра Ли группы H_1 , тогда

$$H_{1} = \{ v \in H \mid [v, K_{1}'] \subset K_{1}' \}. \tag{10}$$

Пусть $K_1' = H \oplus N$, $K_2' = H \oplus N$.

Теорема 1.1. [4]. Если выполняется условие

$$[N,N] \subset K_1', \tag{11}$$

то внешние дифференциалы $d\omega^{t+1} = 0,...,d\omega^r = 0$ обращаются в нуль в пространстве K_2' .

Заметим, что условие (11) всегда выполняется для одномерного подмногообразия (D_0,f) , а также для подмногообразий любой размерности в случае, когда группа Ли G является полупрямым произведением группы стационарности точки пространства M и абелевой группы, в частности для всех евклидовых и псевдоевклидовых пространств.

Используя лемму Картана, систему $(9, \delta)$ на пространстве K_2' можно переписать в виде [4]: $\Theta_{\rho}^{t+1} = A_{\rho\delta}^{t+1} \widetilde{\omega}^{\delta}$, ..., $\Theta_{\rho}^{r} = A_{\rho\delta}^{r} \widetilde{\omega}^{\delta}$, $A_{\rho\delta}^{\varepsilon} = A_{\delta\rho}^{\varepsilon}$, $\varepsilon = t+1$, ..., r $(\widetilde{\omega}^{\delta} - \text{ограничение формы } \omega^{\delta}$ на пространство K_2'), а систему (9) в виде:

$$\omega^{t+1} = 0, \dots, \omega^r = 0;$$

$$\Omega_{\rho}^{t+1} \equiv \Theta_{\rho}^{t+1} - A_{\rho\delta}^{t+1} \widetilde{\omega}^{\delta} = 0, \dots, \Omega_{\rho}^r \equiv \Theta_{\rho}^r - A_{\rho\delta}^r \widetilde{\omega}^{\delta} = 0.$$
(12)

Теорема 1.2. [4]. Система 1-форм

$$\omega^{t+1} = 0, ..., \omega^r = 0, \ \Omega_0^{t+1} = 0, ..., \Omega_0^r = 0$$
 (13)

есть система форм Пфаффа, определяющая подпространство K'_2 .

Теорема 1.3. Система форм

$$\Omega_{\rho}^{t+1} = 0,...,\Omega_{\rho}^{r} = 0, \ p = s+1,...,t,$$
 (14)

рассматриваемая как алгебраическая система относительно форм $\omega^{s_1+1}=0,...,\omega^s=0$, разрешима относительно этих форм. При этом получается выражение форм $\omega^{s_1+1},...,\omega^s$ через формы $\omega^{s_1+1},...,\omega^t$.

Разрешив систему (14) относительно форм $\omega^{s_1+1} = 0,...,\omega^s = 0$, найдем

$$\omega^{s_1+1} = \lambda_{\alpha}^{s_1+1} \omega^{\rho}, \dots, \omega^{s} = \lambda_{\alpha}^{s} \omega^{\rho}. \tag{15}$$

Система (15) эквивалентна системе (14). Тогда систему (13) можно переписать в виде:

$$\omega^{t+1} = 0, ..., \omega^{r} = 0, \ \omega^{s_1+1} - \lambda_{\rho}^{s_1+1} \omega^{\rho} = 0, ..., \omega^{s} - \lambda_{\rho}^{s} \omega^{\rho} = 0.$$
 (16)

Коэффициенты $\lambda_{\rho}^{s_1+1},...,\lambda_{\rho}^s$, $\rho=s+1,...,t$ называются дифференциальными инвариантами подмногообразия (D_0,f) , полученными при первом продолжении. Может быть, среди полученных дифференциальных инвариантов есть зависимость. Чтобы получить независимые инварианты первого продолжения, надо подействовать на подмногообразие (D_0,f) преобразованием h_1 группы H_1 . При этом подмногообразие (D_0,f) перейдет в $(D_0,h_1\circ f)$, а подпространство K_1 (а следовательно, и K_1') не изменится, а подпространство K_2 и, соответственно, K_2' изменится. При этом надо так подобрать элемент h_1 , чтобы K_2' привелось к возможно более простому виду. В соответствии с этим и система (13), определяющая K_2' , приведется к более простому виду и оставшиеся коэффициенты будут независимыми дифференциальными инвариантами первого продолжения.