УДК 631.416.9(476)

Γ .В. Толкач 1 , С.С. Позняк 2

¹преподаватель каф. зоологии и генетики Брестского государственного университета имени А.С. Пушкина ²д-р с.-х. наук, проф., зам. директора Международного государственного экологического института имени А.Д. Сахарова Белорусского государственного университета

ОСОБЕННОСТИ НАКОПЛЕНИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ В ДЕРНОВО-ПОДЗОЛИСТЫХ ПОЧВАХ НА ТЕРРИТОРИЯХ САДОВЫХ ТОВАРИЩЕСТВ БРЕСТСКОГО РАЙОНА

Удовлетворение потребностей населения в полноценных продуктах питания является одним из главных факторов социальной и политической стабильности в Республики Беларусь. Определенная роль в этом процессе отводится садоводческим, огородническим объединениям граждан. В статье представлены данные об особенностях локального содержания валовых соединений тяжелых металлов в дерново-подзолистых почвах садовых товариществ, расположенных на территории Брестского района. Накопление тяжелых металлов в почве — это не только увеличение их содержания, но и нарастание экологически опасных последствий, создающих угрозу здоровью человека.

Введение

На начало 2008 г. в Республике Беларусь насчитывалось около 1,1 млн личных подсобных хозяйств и более 4,5 тыс. садовых товариществ и дачных кооперативов [1]. В 2007 г. в частном секторе было получено почти 90% картофеля, примерно столько же плодов и ягод, пятая часть молока, более 6% зерна, реализовано 16,8% мяса скота и птицы в живом весе от общего объема продукции в хозяйствах всех категорий, что составляет 35% сельхозпродукции от общего объема производства в стране [2; 3].

На территории Брестского района, по данным Брестского райисполкома, насчитывалось (по состоянию на 01.01.2015 г.) 53 фермерских (крестьянских) хозяйства, 14 крупных сельхозорганизаций Минсельпрода, 18 сельхозорганизаций других министерств и ведомств, 248 садовых товариществ и более 90 тыс. личных подсобных хозяйств граждан. Такое количество сельхозпредприятий оказывает существенное влияние на экологическую обстановку в регионе. Общая площадь земель сельхозорганизаций составляет 57 110 га, крестьянских хозяйств — 943 га, личных подсобных хозяйств граждан — 19 382 га, садовых товариществ — 1 710 га. Общая площадь земель, отведенных для индивидуального пользования граждан, составляет значительную часть в общей площади сельхозугодий (диаграмма). Вклад в объемах производства сельскохозяйственной продукции, полученной на территории личных подсобных хозяйств и садовых товариществ, является существенным, хоть и имеет тенденцию к снижению [5].

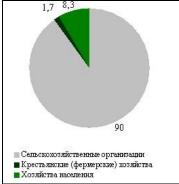


Диаграмма. – Производство продукции растениеводства в хозяйствах всех категорий Брестской области за 2014 г., % [4]

В настоящее время проблема загрязнения почв тяжелыми металлами (ТМ) является актуальной, т.к. ТМ занимают одно из лидирующих мест среди всех загрязнителей окружающей среды [6]. Такие ТМ, как свинец, медь, цинк, кадмий, даже в очень малых концентрациях способны вызвать иммунологические, онкологические и другие виды заболеваний [7; 8]. В результате исследований, проводимых учеными разных стран, доказано, что около 70% ТМ поступает в организм человека с продуктами питания и водой [9; 10]. Установлено, что металлы сравнительно быстро накапливается в почве и крайне медленно из нее удаляются. Период полуудаления (т.е. удаления половины от начальной концентрации) ТМ значительно варьирует у различных элементов и занимает весьма продолжительный период времени: для цинка – от 70 до 510 лет; кадмия – от 13 до 110 лет, меди – от 310 до 1 500 лет, свинца – от 770 до 5 900 лет [10].

Проблеме загрязнения тяжелыми металлами окружающей среды в литературе уделено много внимания, однако в отношении изучения содержания тяжелых металлов в почвах садовых товариществ и личных подсобных хозяйств исследования либо отсутствуют, либо их проведено недостаточно. Поэтому *целью* нашего исследования является изучение валового содержания тяжелых металлов в почвах на территориях основных садовых товариществ и дачных кооперативов Брестского района.

Объект и методика исследований

Объект исследования — дерново-подзолистые песчаные и супесчаные, а также дерново-подзолистые глинистые и суглинистые почвы садовых товариществ и дачных кооперативов Брестского р-на. Предмет исследования — содержание валовых соединений тяжелых металлов в почвах. Методы исследования — отбор проб, пробоподготовка, химический анализ образцов, статистическая обработка экспериментальных данных. Пробы почв отбирались на пробных площадках (ПП) с учетом рельефа местности в соответствии с существующими методическими рекомендациями [11]. Почвенные образцы отбирали с горизонтов 5–20, 21–35 и 36–50 см; отбор проводился из 3-х точечных проб, расположенных на удалении 20 м; в ходе эксперимента формировалась объединенная почвенная проба, что позволило дать более объективную оценку степени накопления тяжелых металлов почвой. Было отобрано 672 почвенных образца для анализа с территории 112 садовых товариществ. Пробоподготовка образцов почвы проводилась в соответствии с существующей методикой [12]. Пробные площадки (ПП), на которых были отобраны образцы почвы для анализа, отмечены кружочками (рисунок).

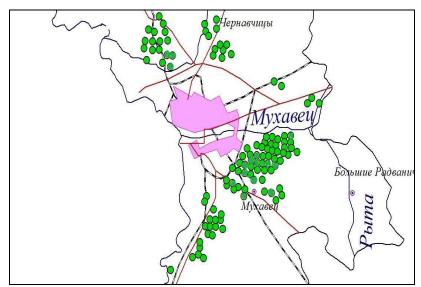


Рисунок. – Расположение садовых товариществ по территории Брестского района

Результаты исследования и их обсуждение

Анализ валового содержания элементов на территории садовых товариществ, расположенных на дерново-подзолистых песчаных и супесчаных почвах.

Дерново-подзолистые почвы формируются в условиях промывного водного режима на кислых породах различного генезиса и гранулометрического состава. Дерново-подзолистые песчаные и супесчаные почвы обычно бедны элементами питания, но достаточно увлажнены. Дерново-подзолистые почвы характеризуются малой мощностью дернового горизонта, обеднённостью верхней части профиля окислами и относительным обогащением кремнезёмом, уплотненностью горизонта вмывания, кислой и сильнокислой реакцией (рН 3,3–5,5) и требуют известкования. Валовое содержание элементов на территории садовых товариществ, расположенных на дерново-подзолистых песчаных и супесчаных почвах, отражено в таблице 1.

Кларк в земной коре титана (Ті) составляет 4 500 мг/кг [15], в почвах Республики Беларусь в среднем содержится 1 562 мг/кг титана [13]. Анализ данных, полученных в результате исследования, свидетельствует о том, что содержание титана в почвах на территории СТ варьирует в широких пределах: от 600 мг/кг на территории СТ «Надзея-08» до 5 333 мг/кг на территории СТ «Балагое».

Таблица 1. – Валовое содержание элементов на территории садовых товариществ, рас-

положенных на дерново-подзолистых песчаных и супесчаных почвах

положенных на дерново-подзолистых песчаных и супесчаных почвах									
Химиче- ский элемент	Min	Max	$\frac{-}{x}$	δ	m	U, %	t	Кларк*	ПДК (ОДК)**
Ti	600	5 333	2 238,5	850,9	85,5	38,0	26,2	1 562	н/у
Mn	200	2 783	774,4	593,6	59,7	76,6	13,0	247	1500
Zr	50	3 000	256,4	343,0	34,5	133,8	7,4	200	н/у
Cr	7	131	62,7	28,4	2,9	45,2	22,0	36	100
Zn	30	233	66,9	40,9	4,1	61,1	16,3	35	55
V	10	85	35,2	21,1	2,1	60,0	16,6	34	150
Y	10	350	34,8	47,2	4,7	135,5	7,3	23	н/у
Ni	3	34	15,9	5,4	0,5	34,0	29,2	20	20
Cu	3	100	32,1	27,1	2,7	84,3	11,8	13	33
Pb	10	60	26,9	12,4	1,3	46,1	21,6	12	32
Nb	3	36	9,5	5,5	0,6	57,7	17,3	12	н/у
Co	1	45	9,2	6,3	0,6	69,3	14,4	6	20
Yb	1	21	5,6	3,3	0,3	59,6	16,7	2	н/у
Sn	1	5	2,3	1,1	0,1	47,7	20,8	1	4,5
Ga	3	21	8,3	2,3	0,2	27,8	35,8	н/у	н/у
Li	8	57	15,6	8,8	0,9	56,2	17,7	н/у	н/у
В	9	63	30,3	13,5	1,4	44,4	22,4	н/у	н/у

Min-минимальное значение, мг/кг; Max-максимальное значение, мг/кг; x-cpedhee арифметическое значение, мг/кг; $\delta-cmahdapmhoe$ отклонение; m-ouuбка средней; U-ко- эффициент вариации, %; t-ko- фициент достоверности для среднего значения. *-Peruo- нальные кларки приведены для дерново-подзолистых почв [13]; $**\Pi$ ДК (ОДК) — для дерново-подзолистых песчаных и супесчаных почв — по [14]; H/у — не установлено.

Среднее содержание Ті в песчаных, супесчаных почвах -2239 мг/кг, что в 1,4 раза превышает значение регионального кларка. Превышение кларкового значения более чем в 2 раза наблюдалось в образцах, отобранных в почвах на территории СТ «Строитель-27», «Электрон-82», «Факел газоаппарата», «Кветка 92», «Тонус», «Витамин ЦУМа», «Лесная поляна», «Лесная поляна-2010», «Восход».

Марганец (Мп) широко распространен в природе и содержится в земной коре, воде морей, рек и в почве. Снижение рН почвы, ее аэрация, обильное внесение удобрений в кислые почвы без известкования способствуют увеличению доступности марганца для растений. Кларк в земной коре составляет 1 000 мг/кг [15], региональный кларк марганца для Беларуси составляет 247 мг/кг [13], а ОДК в почве — 1 500 мг/кг [14]. Анализ данных, полученных в результате исследования, свидетельствует о том, что среднее содержание Мп в дерново-подзолистых песчаных почвах составляет 774 мг/кг, хотя варьирует на территориях разных СТ в широких пределах: от 200 мг/кг на территории СТ «Березка-87» до 2 783 мг/кг на территории СТ «Светлячок ГМУ». Превышение ОДК наблюдалось в образцах почвы, отобранных на территории СТ «Мичуринец-5», «Факел газоаппарата», «Кветка-92», «Светлячок ГМУ», «Витамин ЦУМа», «Лесная поляна», «Ивушка», «Аист», «Полянка-1», «Турист-88», «Дубок дружба», «Ляснянка», «Бульково».

Содержание циркония (Zr) в почвах наследуется от материнской породы, основными антропогенными источниками поступления циркония в природную среду являются твердые отходы, пылевые и дымовые выбросы топливно-энергетических предприятий. Элемент относится к 3 классу опасности, региональный кларк — 200 мг/кг [13], а кларк в земной коре составляет 170 мг/кг [15]. Анализ данных, полученных в результате исследования, свидетельствует о том, что содержание Zr в почвах на территории СТ варьирует в широких пределах: от 50 мг/кг на территории СТ «Журавинка-88» до 3 000 мг/кг на территории СТ «Бульково». Среднее содержание Zr в почвах садовых товариществ составляет на дерново-подзолистых песчаных, супесчаных почвах — 256 мг/кг. Превышение регионального кларка более чем в 2 раза наблюдалось в образцах, отобранных на территории СТ «Полиграфист-82», «Золотой корень», «Надзея-3», «Строитель-27», «Электрон-82», «Мичуринец-5», «Лянок», «Аист».

Основными источниками загрязнения почвы хромом (Cr) являются выбросы цементных заводов, отвалов железохромовых шлаков, нефтеперегонных заводов, предприятий черной и цветной металлургии, использование в сельском хозяйстве осадков промышленных и сточных вод и минеральных удобрений. Кларк в земной коре составляет 83 мг/кг [15], в почвах Республики Беларусь в среднем содержится 36 мг/кг [13], ОДК в почве 100 мг/кг хрома [14]. Анализ данных свидетельствует о том, что содержание Сr в почвах на территории СT варьирует в широких пределах: от 7 мг/кг (СТ «Армеец-3») до 131 мг/кг на территории СТ «Кветка-92». Среднее содержание Сr в почвах на песчаных, супесчаных почвах — 63 мг/кг.

Кларк в земной коре цинка (Zn) составляет 83 мг/кг [15], в почвах Республики Беларусь в среднем содержится 35 мг/кг [13], ПДК для дерново-подзолистой песчаной и супесчаной почвы составляет 55 мг/кг цинка [14]. Среднее содержание цинка в дерново-подзолистых песчаных и супесчаных почвах – 67 мг/кг, что не существенно выше регионального кларка. Содержание цинка в почвах варьирует в пределах: от 30 мг/кг либо менее (в почвах 20% проб) до 233 мг/кг (СТ «Светлячок ГМУ»). Превышение содержания цинка в почвах может быть связано с внесением повышенных доз минеральных удобрений, т.к. фосфорные удобрения содержат примеси Mn, Zn, Ni, Cr, Pb, Cu, Cd [14]. Ванадий (V) находится преимущественно в рассеянном состоянии и обнаруживается в железных рудах, нефтях, асфальтах, битумах, горючих сланцах, углях и др. Одним из главных источников загрязнения природных вод ванадием являются нефть и продукты ее переработки. Кларк в земной коре составляет 90 мг/кг [15]. Региональный фон – 34 мг/кг [13], а ОДК в почве составляет 150 мг/кг [14]. Анализ данных, полученных в результате исследования, свидетельствует о том, что содержание V в почвах на территории СТ варьирует в широких пределах: от 10 мг/кг (28% проб) до 85 мг/кг на территории CT «Армеец-1». Среднее содержание в почвах CT, расположенных на дерновоподзолистых песчаных и супесчаных почвах -35 мг/кг, что близко к значению фонового показателя. Кларк в земной коре иттрия (Y) составляет 29 мг/кг [15], а региональный кларк -23 мг/кг [13]. Анализ данных, полученных в результате исследования, свидетельствует, что содержание Y в почвах на территориях СТ варьирует в широких пределах: от 10 мг/кг и менее (27% проб) до 350 мг/кг на территории СТ «Строитель-27». Среднее содержание иттрия в дерново-подзолистых песчаных, супесчаных почвах -35 мг/кг, что близко к значению регионального кларка.

Никель (Ni) в континентальных отложениях элемент присутствует в виде сульфидов и арсенитов, ассоциируется также с карбонатами, фосфатами и силикатами. Элемент никель, слабо подвижный в кислых почвах, в щелочной среде переходит в растворимые, подвижные и крайне токсичные формы. Значительная часть элемента концентрируется в илистых, богатых гумусом фракциях почвы. Кларк в земной коре составляет 58 мг/кг [15], а в почвах Республики Беларусь в среднем содержится 20,0 мг/кг никеля [13]. ОДК для песчаных и супесчаных почв – 20 мг/кг [14]. Анализ данных свидетельствует о том, что содержание Ni в почвах на территории СТ варьирует в широких пределах: от 3 мг/кг на территории СТ «Армеец-3» до 34 мг/кг на территории СТ «Балагое». Среднее содержание Ni в почвах СТ, расположенных на дерново-подзолистых песчаных и супесчаных почвах, – 16 мг/кг, что ниже регионального кларка.

Антропогенными источниками поступления меди (Си) являются выбросы металлургических и машиностроительных предприятий, гальванотехники, сварки, гальванизации, производстве красителей, керамики, а также сжигание углеводородного топлива. Кларк в земной коре составляет 47 мг/кг [15], а в почвах Республики Беларусь в среднем содержится 13 мг/кг меди [13]. ПДК для дерново-подзолистой песчаной и супесчаной почвы составляет 33 мг/кг меди [15]. Анализ данных, полученных в результате исследования, свидетельствует о том, что содержание Си в почвах на территориях СТ варьирует в широких пределах: от 3 мг/кг на территории СТ «Энергетик» до 100 мг/кг на территории СТ «Вымпел УВД». Среднее содержание меди в почвах СТ составляет на дерново-подзолистых песчаных и супесчаных почвах – 32 мг/кг, что выше значения регионального кларка. Превышение значения ПДК по меди в 2 раза и более отмечалось на территориях СТ «Бульково», «Лесное-2», «Ляснянка», «Машиностроитель», «Березка Чернавчицкая», «Верасок-08», «Меркурий-10», «Турист-88», «Аграрник», «Лесок 1», «Полянка-1», «Дубрава-6», «Мара», «Вымпел УВД», что может быть связано как с применением повышенных доз минеральных удобрений и средств защиты растений, так и с расположением в непосредственной близости железнодорожного полотна.

Свинец (Рb) является приоритетным элементом-токсикантом, относящимся к первому классу опасности. По сравнению с другими ТМ свинец наименее подвижен, причем степень подвижности элемента сильно снижается при известковании почв. Кларк в земной коре составляет 16 мг/кг [15], в почвах Республики Беларусь в среднем содержится 12 мг/кг [13], ПДК для дерново-подзолистой песчаной почвы составляет 32 мг/кг [14]. Анализ данных, полученных в результате исследования, свидетельствует о том, что содержание Рb в почвах на территории СТ варьирует в широких пределах: от 10 мг/кг на территории СТ «Ветеран-3», «Экспресс-5» до 60 мг/кг на территории СТ «Кветка-92». Среднее содержание свинца в почвах СТ составляет на дерново-подзолистых песчаных и супесчаных почвах — 27 мг/кг, что выше регионального кларка. Превышение ПДК отмечалось в почвах на территориях СТ «Кветка-92», «Восток-2009», «Электрон-82», «Радуга», «Красная гвоздика», «Гудок-80», «Строитель-27», «Дорожник СКТМ», «Мичуринец-5», «Факел газоаппарата», «Нива-89», «Автомобилист-80», «Светлячок ГМУ», «Витамин ЦУМа», «Лесная поляна-2010», «Вымпел УВД», «Восход», «Турист», что объясняется близким расположением к автодорогам и железнодорожному полотну.

Кларк в земной коре ниобия (Nb) составляет 20 мг/кг [15], а региональный кларк — 12 мг/кг [13]. Среднее содержание Nb в почвах CT составляет на дерново-подзолистых песчаных и супесчаных почвах — 10 мг/кг, что ниже регионального кларка. Анализ данных, полученных в результате исследования, свидетельствует о том, что содержание Nb в почвах на территории CT варьирует в широких пределах: от 3 мг/кг на территории CT «Электрон-1», «Березка», «Экспресс-5», «Климат», «Армеец-2», «Армеец-3» до 36 мг/кг на территории CT «Строитель-27». Превышение фонового значения ниобия более чем в 2 раза наблюдалось в образцах почвы, отобранных на территориях CT «Строитель-27», «Факел газоаппарата».

Кобальт (Со) распространен в составе соединений. В зависимости от рН почвы скорость почвенной миграции кобальта меняется: он слабо подвижен в нейтральных, еще меньше в кислых и практически неподвижен в щелочных почвах. Кларк в земной коре составляет 18 мг/кг [15], а региональный фон – 6 мг/кг [13]. ОДК в почве составляет 20 мг/кг [14]. В результате исследований установлено, что содержание Со в почвах варьирует в широких пределах: от 1 мг/кг на территории СТ «Электрон-1» до 45 мг/кг на территории СТ «Балагое». Превышение ОДК также отмечалось на территориях СТ «Восток-2009», «Красная гвоздика», «Радуга».

Кларк в земной коре иттербия (Yb) составляет 0,33 мг/кг [15], а в почвах Республики Беларусь в среднем содержится 2 мг/кг [13], ПДК для содержания иттербия в почве не установлено [14]. Анализ данных, полученных в результате исследования, свидетельствует о том, что содержание Yb в почвах на территории CT варьирует в широких пределах: от 1 мг/кг на территории CT «Экспресс 5», «Песчаное-2008», «Буревестник-86» до 21 мг/кг на территории CT «Строитель-27», что в 10,5 раз выше регионального кларка. Среднее содержание иттербия в почвах CT, расположенных на дерново-подзолистых песчаных, супесчаных почвах — 5,6 мг/кг, что в 2,8 раза выше значения регионального кларка.

Основными источниками поступления олова (Sn) в окружающую среду являются промышленные сточные воды и атмосферные выбросы перерабатывающих предприятий, металлургических и химических производств, в результате сжигания на промышленных предприятиях угля, а также вследствие применения оловосодержащих минеральных удобрений и пестицидов. Кларк в земной коре составляет 2,5 мг/кг [15]. Региональный кларк – 1 мг/кг [13]. Среднее содержание олова в почвах СТ, расположенных на дерново-подзолистых песчаных и супесчаных почвах – 2,3 мг/кг, что в 2,3 раза выше регионального кларка. Превышение фонового значения олова более чем в 5 раз наблюдалось в образцах, отобранных на территориях нескольких СТ: «Кветка-92», «Восток-2009», «Радуга», «Красная гвоздика». Это может быть связано с расположением их в непосредственной близости свалки бытовых отходов.

Анализ валового содержания элементов на территории садовых товариществ, расположенных на дерново-подзолистых суглинистых и глинистых почвах

Дерново-подзолистые почвы на суглинках в сравнении с другими имеют большие резервы минерального питания растений, но их водно-физические свойства неблагоприятных и требуют первоочередного улучшения. Благоприятные условия для обработки и посева на них ограничиваются короткими сроками. К числу важнейших агротехнических мероприятий по оптимизации условий жизнедеятельности культурных растений на данных почвах необходимо отнести хорошую заправку почв органическими удобрениями и своевременную и правильную их обработку. Данные о валовом содержании элементов на территории садовых товариществ, расположенных на дерновоподзолистых глинистых и суглинистых почвах представлены в таблице 2.

Среднее содержание титана в суглинистых почвах составляет 2 059 мг/кг, что выше кларка в 1,3 раза. Содержание Ті на территории СТ «Старица пограничная» суще-

ственно превышает фоновое содержание (более чем в 2 раза) и составляет 3 230 мг/кг, что указывает на наличие загрязнения. Среднее содержание марганца в суглинистых почвах составляет 1 048 мг/кг, однако на территории отдельных СТ варьирует в широком пределе: от 200 мг/кг на территории СТ «Пралеска-93» до 3 480 мг/кг на территории СТ «Старица пограничная». Превышение ОДК наблюдалось на территории СТ «Радуга-2008» и «Криница».

Таблица 2. — Валовое содержание элементов на территории садовых товариществ, расположенных на дерново-подзолистых глинистых и суглинистых почвах

		F	7			j	I DIX IIO IDC		ппс
Химиче- ский элемент	Min	Max	$\frac{-}{x}$	δ	m	U%	t	Кларк*	ПДК (ОДК) **
Ti	1 500	3 230	2 058,5	453,0	130,8	22,0	15,7	1 562	н/у
Mn	200	3 480	1 048,3	1 127,1	325,4	107,5	3,2	247	1 500
Zr	60	383	207,9	93,0	26,9	44,8	7,7	200	н/у
Cr	18	100	64,7	28,7	8,3	44,4	7,8	36	100
Zn	30	183	55,8	41,2	11,9	73,9	4,7	35	110
V	10	57	28,6	17,3	5,0	60,3	5,7	34	150
Ni	8	22	15,0	3,7	1,1	25	13,9	20	40
Y	10	118	24,3	30,3	8,7	124,6	2,8	23	н/у
Cu	7	75	34,6	27,3	7,9	78,9	4,4	13	66
Pb	8	32	20,2	8,3	2,4	41,2	8,4	12	32
Nb	4	29	9,8	6,5	1,9	66	5,2	12	н/у
Co	5	15	8,1	3,3	1,0	40,3	8,6	6	20
Yb	1,5	11	4,6	2,7	0,8	59,8	5,8	2	н/у
Sn	1	3	2,0	0,75	0,2	37,4	9,3	1	4,5
Ga	5	10	7,9	1,9	0,5	23,8	14,5	н/у	н/у
Li	10	30	16,3	9,5	2,7	58,4	5,9	н/у	н/у
В	11	53	26,8	13,9	4,0	52,1	6,6	н/у	н/у

Min- минимальное значение, мг/кг; Max- максимальное значение, мг/кг; x- среднее арифметическое значение, мг/кг; $\delta-$ стандартное отклонение; m- ошибка средней; U- коэффициент вариации, %; t- коэффициент достоверности для среднего. *- Региональные кларки приведены для дерново-подзолистых почв [13]; **ПДК (ОДК) для дерново-подзолистых глинистых и суглинистых почв - no [14]; H/у - не установлено.

В целом содержание Mn в глинистых и суглинистых почвах выше, чем в песчаных и супесчаных, т.к. повышенное содержание физической глины и гумуса в пахотном слое этих почв по сравнению с песчаными и супесчаными способствует некоторому накоплению и закреплению микроэлементов в гумусово-аккумулятивном горизонте, а также является одной из главных причин относительно высокой концентрации валовых форм микроэлементов в почвенном профиле.

Среднее содержание циркония в суглинистых почвах составляет 208 мг/кг и близко к значению регионального кларка. В то же время наблюдалось превышение значения кларка более чем в 2 раза в почвах СТ «Свет-бэлз», «Старица пограничная», «Радуга-2008», «Сосновая-2», «Росинка-15». Среднее содержание хрома в глинистых и суглинистых почвах — 65 мг/кг, что в 1,8 раза превышает значение кларка. В почвах Республики Беларусь в среднем содержится 35 мг/кг цинка [13]. Среднее содержание цинка в дерново-подзолистых глинистых и суглинистых — 56 мг/кг, что несущественно выше регионального кларка. Анализ данных, полученных в результате исследования, свидетельствует: содержание ванадия, иттрия, никеля в почвах на территории СТ на глинистых и суглинистых почвах ниже фонового значения и составляет 29, 24, 15 мг/кг соответ-

ственно. Среднее содержание меди в глинистой и суглинистой почвах СТ составляет 35 мг/кг, что выше кларка, но не превышает значение ОДК. Анализ данных, свидетельствует о том, что содержание Рb в почвах на территории СТ варьирует в широких пределах: от 8 мг/кг на территории СТ «Свет-Бэлз» до 32 мг/кг на территории СТ «Старица пограничная». Среднее содержание свинца в глинистой и суглинистой почвах – 20 мг/кг, что выше регионального кларка. Среднее содержание Nb в почвах СТ, расположенных на дерново-подзолистых глинистых и суглинистых почвах, составило 10 мг/кг, что ниже кларка, однако в почвах на территории СТ варьирует в пределах: от 4 мг/кг на территории СТ «Солнечное» до 29 мг/кг на территории СТ «Старица пограничная» и «Сосновое-2». В результате исследований установлено, что содержание Со в почвах варьирует в пределах: от 5 мг/кг на территории СТ «Ландыш», «Сосновое-2» до 15 мг/кг на территории СТ «Березка 2007». Содержание Yb варьирует в пределах: от 1,5 мг/кг на территории СТ «Свет-бэлз» до 11 мг/кг на территории СТ «Старица пограничная», что в 5,5 раз выше регионального кларка. Среднее содержание иттербия в почвах СТ, расположенных на дерново-подзолистых, суглинистых и глинистых почвах, – 4,6 мг/кг, что выше регионального кларка в 2,3 раза.

Поскольку оценка уровня загрязнения почвы по одному химическому элементу не может дать полной картины состояния исследуемой почвы, целесообразно определить коэффициент концентрации химического вещества K_c и суммарный показатель загрязнения Z_c (суммарный показатель Caeta):

$$Zc = (\Sigma Kc) - (n-1),$$

где Kc – коэффициент концентрации химического элемента, n – число, равное количеству элементов, входящих в геохимическую ассоциацию [16].

Таблица 3. – Суммарное загрязнение дерново-подзолистых почв на территориях садовых товаришеств Брестского района

Химиче- ский	Региональ- ный кларк	Песча и супесчан		Глинистые и суглинистые почвы		
элемент	[13]	Коэффициент Суммарный		Коэффициент	Суммарный	
		концентрации	показатель	концентрации	показатель	
		химического	загрязнения	химического	загрязнения	
		элемента (К _с)	(Z_c)	элемента (К _с)	(Z_c)	
Ni	20	0,8		0,8		
Co	6	1,5		1,4		
V	34	1,0		0,8		
Mn	247	3,1		4,2		
Ti	1562	1,4		1,3		
Cr	36	1,7	11,8	1,8	10,8	
Pb	12	2,2	11,0	1,7	10,0	
Zr	200	1,3		1,1		
Nb	12	0,8		1,0		
Cu	13	2,5		2,7		
Zn	35	1,9		1,6		
Yb	2	2,8		2,3		
Y	23	1,5		1,1		
Sn	1	2,3		2,0		

Расчет суммарного показателя загрязнения выявил, что по содержанию валовых форм тяжелых металлов песчаные, супесчаные, глинистые и суглинистые почвы на тер-

риториях садовых товариществ соответствуют категории допустимого уровня загрязнения, т.к. величина Z_c не превышает 16.

Заключение

В ходе исследования установлено, что:

- 1. Исследуемая дерново-подзолистая почва характеризуется малым содержанием гумуса, что определяет незначительное накопление тяжелых металлов. В дерново-подзолистых песчаных и супесчаных почвах приоритетными загрязнителями выступают Mn, Yb, Cu, Sn, Pb, а в суглинистых и глинистых почвах Mn, Cu, Yb, Sn.
- 2. Опасность загрязнения растений тяжелыми металлами на почвах тяжелого механического состава значительно меньше, что связано с большей удерживающей способностью илистой фракции. На глинистых и суглинистых почвах токсичность тяжелых металлов проявляется слабее, чем на песчаных и супесчаных.
- 3. По содержанию тяжелых металлов почвы можно классифицировать как почвы с низким уровнем загрязнения. По суммарному показателю загрязнения почва соответствует категории допустимого уровня загрязнения.

Следует отметить, что валовое содержание тяжелых металлов является фактором емкости, отражающим, в первую очередь, потенциальную опасность загрязнения растительной продукции, инфильтрационных и поверхностных вод, и характеризует общее загрязнение почвы.

Данные, полученные в результате исследования, применяются в Брестском Белгипроземе при расчете кадастровой стоимости земли садовых товариществ, а также Брестским областным комитетом по природным ресурсам и охране окружающей среды для оценки содержания тяжелых металлов в почвах региона.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Белорусское телеграфное агентство. БЕЛТА [Электронный ресурс]. Режим доступа: http://www.belta.by/onlineconference/view/zakony-dachnoj-zhizni-641. Дата доступа: 22.07.2015.
- 2. Цыбулько, А. Хозяйство личное, интерес государственный / А. Цыбулько // Белорус. нива. 2008.-1 окт. С. 1.
- 3. Кузьмич, И. П. Личные подсобные хозяйства: проблемы правового регулирования / И. П. Кузьмич // Право в современном белорусском обществе : сб. науч. тр. / редкол.: В. И. Семенков (гл. ред.) [и др.] ; Нац. центр законодательства и правовых исследований Респ. Беларусь. Минск : Право и экономика, 2009. Вып. 4 С. 416—428.
- 4. Главное статистическое управление Брестской области [Электронный ресурс]. Режим доступа: http://brest.belstat.gov.by/. Дата доступа: 22.07.2015.
- 5. Интернет-ресурс Белорусской сельскохозяйственной библиотеки имени И. С. Лупиновича [Электронный ресурс]. Режим доступа: http://aw.belal.by/. Дата доступа: 25.07.2015.
- 6. Израэль, Ю. А. Экология и контроль состояния природной среды и пути их решения : учеб.-метод. пособие / Ю. А. Израэль. Л. : Гидрометеоиздат, 1984. 560 с.
- 7. Ильин, В. Б. О нормировании тяжелых металлов в почве / В. Б. Ильин // Почвоведение. $1986. N_{\odot} 9. C. 90$ —98.
- 8. Информационно-аналитический бюллетень Брестского областного центра гигиены, эпидемиологиии и общественного здоровья [Электронный ресурс]. Режим доступа: http://ocgie.brest.by/. Дата доступа: 25.07.2015.
- 9. Тиво, П. Ф. Тяжелые металлы и экология / П. Ф. Тиво, И. Г. Быцко. Минск : Юнипол, 1996. 192 с.

- 10. Кабата-Пендиас, А. Микроэлементы в почвах и растениях / А. Кабата-Пендиас, Х. Пендиас. М. : Мир, 1989. 439 с.
- 11. Методические указания по определению тяжелых металлов в почвах сельхозугодий и продукции растениеводства. М.: ЦИНАО, 1992. 61 с.
- 12. Охрана природы. Почвы. Методы отбора и подготовки проб для химического, бактериологического, гельминтологического анализа: ГОСТ 17.4.4.02-84.
- 13. Петухова, Н. Н. К кларкам микроэлементов в почвенном покрове Беларуси / Н. Н. Петухова, В. А. Кузнецов // Докл. АН Беларуси. 1992. Т. 26, № 5. С. 461–465.
- 14. Об утверждении Гигиенических нормативов 2.1.7.12-1-2004 «Перечень предельно допустимых концентраций (ПДК) и ориентировочно допустимых концентраций (ОДК) химических веществ в почве» : постановление Главного государственного санитарного врача Респ. Беларусь, 25. февр. 2004 г., № 28 // Нац. центр правовой информации Респ. Беларусь. Минск, 2004. 30 с.
- 15. Виноградов, А. П. Средние содержания химических элементов в главных типах изверженных пород земной коры / А. П. Виноградов // Геохимия. -1962. -№ 7. С. 555–571.
- 16. Методические рекомендации по оценке степени загрязнения атмосферного воздуха населенных пунктов металлами по их содержанию в снежном покрове и почве / Б. А. Ревич, Ю. Е. Сает, Р. С. Смирнова. М.: ИМГРЭ, 1990. 462 с.

Рукапіс паступіў у рэдакцыю 12.07.2016

Taukach G.W., Pazniak S.S. Features of Accumulation of Heavy Metals in Sod-Podzolic Soils of the Garden Association of Brest Region

This article provides information about the features of the local content of total heavy metals in sod-podzolic soils on the territory of of the garden association of Brest region.