УДК 577.175.1:576.353

DOI 10.63874/2218-0311-2025-1-109-116

Александр Николаевич Тарасю κ^{1} , Виктор Викторович Савчу κ^{2}

¹канд. биол. наук, доц., доц. каф. биологических и химических технологий Брестского государственного университета имени А. С. Пушкина ²магистрант 2-го года обучения факультета естествознания Брестского государственного университета имени А. С. Пушкина

Alexander Tarasiuk¹, Viktor Savchuk²

¹Candidate of Biological Sciences, Associate Professor, Associate Professor of the Department of Biological and Chemical Technologies of Brest State A. S. Pushkin University

²2-th Year Master's Student of the Faculty of Natural Sciences of Brest State A. S. Pushkin University e-mail: ¹tarasiuk01@yandex.ru; ²svendeta3000@gmail.com

ВЛИЯНИЕ 24-ЭПИКАСТАСТЕРОНА И ЕГО КОНЪЮГАТОВ С КИСЛОТАМИ НА МИТОТИЧЕСКУЮ АКТИВНОСТЬ КЛЕТОК КОРНЕВОЙ МЕРИСТЕМЫ ЯЧМЕНЯ ОБЫКНОВЕННОГО (*HORDEUM VULGARE* L.)*

Исследовано влияние брассиностероида 24-эпикастастерона (ЭК) и его конъюгатов с органическими кислотами 2-моносалицилата 24-эпикастастерона (S23) и тетраиндолилацетата 24-эпикастастерона (S31) в диапазоне концентраций 10^{-11} – 10^{-6} М на митотическую активность клеток корневой меристемы проростков ячменя обыкновенного. Показано, что обработка семян растворами ЭК и S23 в концентрации 10^{-11} М не оказывает существенного влияния на митотический индекс. ЭК в концентрациях 10^{-10} , 10^{-9} и 10^{-8} М повышает исследуемый показатель, а в концентрациях 10^{-7} и 10^{-6} М снижает его. Увеличение митотической активности при действии S23 наблюдается только при концентрациях 10^{-10} и 10^{-9} М, тогда как при более высоких концентрациях (10^{-8} , 10^{-7} и 10^{-6} М) такая активность уменьшается. Наиболее выраженным действием, стимулирующим клеточные деления, обладает S31. Данное соединение во всех исследуемых концентрациях, за исключением 10^{-6} М, приводит к увеличению митотической активности. Наибольшим стимулирующим клеточные деления действием все исследуемые соединения обладают в концентрации 10^{-9} М.

Ключевые слова: брассиностероиды, 24-эпикастастерон, конъюгаты 24-эпикастастерона с кислотами, митотическая активность, ячмень обыкновенный.

Effect of 24-epicastasterone and its Conjugates with Acids on Mitotic Activity of Root Meristem Cells of Common Barley (Hordeum vulgare L.)

The effect of brassinosteroid 24-epicastasterone (EC) and its conjugates with organic acids 2-monosalicylate 24-epicastasterone (S23) and tetraindolylacetate 24-epicastasterone (S31) in the concentration range of 10^{-11} – 10^{-6} M on the mitotic activity of root meristem cells of common barley seedlings was studied. It was shown that seed treatment with EC and S23 solutions at a concentration of 10^{-11} M did not significantly affect the mitotic index. EC at concentrations of 10^{-10} , 10^{-9} and 10^{-8} M increased the studied index, while at concentrations of 10^{-7} and 10^{-6} M it decreased it. An increase in mitotic activity under the action of S23 was observed only at concentrations of 10^{-10} and 10^{-9} M, whereas at higher concentrations (10^{-8} , 10^{-7} and 10^{-6} M) such activity decreased. S31 has the most pronounced effect stimulating cell division. This compound in all studied concentrations, with the exception of 10^{-6} M, leads to an increase in mitotic activity. All studied compounds have the greatest effect stimulating cell division at a concentration of 10^{-9} M.

Key words: brassinosteroids, 24-epicastasterone, conjugates of 24-epicastasterone with acids, mitotic activity, common barley.

Введение

Современное растениеводство остро нуждается в новых подходах к увеличению урожайности сельскохозяйственных культур и повышению их устойчивости к дей-

^{*}Работа выполнена в рамках НИР «Оценка влияния природных брассиностероидов и их конъюгатов с кислотами на морфометрические и физиолого-биохимические параметры сельскохозяйственных и декоративных растений» подпрограммы «Химические основы процессов жизнедеятельности» (Биооргхимия) ГПНИ «Химические процессы, реагенты и технологии, биорегуляторы и биооргхимия» на 2021—2025 гг. (номер государственной регистрации 20211450 от 20.05.2021).

ствию неблагоприятных факторов среды. Одним из перспективных направлений решения этого вопроса является использование природных и синтетических регуляторов роста и развития растений, к числу которых относятся брассиностероиды – растительные стероидные гормоны, играющие ключевую роль в регуляции роста, развития и стрессоустойчивости растений [1]. Положительное влияние этих соединений на рост и развитие растений, а также на устойчивость к действию неблагоприятных факторов среды и болезням установлено для ряда сельскохозяйственных культур, однако число веществ этого класса, обладающих значительной ростстимулирующей активностью, весьма ограничено [2; 3]. В связи с этим важной задачей является поиск новых веществ из класса брассиностероидов, способных оказывать положительное влияние на различные физиолого-биохимические показатели сельскохозяйственных растений. К числу таких веществ относятся конъюгаты брассиностероидов с кислотами, действие которых на растительные организмы остается малоизученным.

Важнейшим показателем, характеризующим влияние биологически активных соединений ростовые процессы, является митотическая на активность меристематических тканей, которые являются наиболее чувствительными и активно реагирующими на внешние воздействия [4]. Это связано с тем, что рост растений тесно коррелирует с процессами деления клеток, поэтому влияние регуляторов роста растений на митотическую активность клеток меристемы отражает их действие на ростовые процессы в целом. В исследованиях на горохе, рапсе, кукурузе и других сельскохозяйственных культурах установлено, что различные химические вещества и физические факторы оказывают существенное влияние на величину митотического индекса как показателя митотической активности [4-6]. Отмечено снижение значений митотического индекса при действии электромагнитного излучения, высокой температуры и увеличение данного показателя при действии лазерного излучения и малых доз радиации. Показаны различия в эффектах разных фитогормонов: индолилуксусная кислота и брассинолид увеличивали митотическую активность клеток корневой меристемы, тогда как цитокинин и гибберреловая кислота снижали.

Данные о влиянии брассиностероидов на ростовые процессы на клеточном уровне немногочисленны. Установлено, что они способны активизировать процессы клеточных делений и усиливать растяжение клеток, что приводит к удлинению и утолщению междоузлиев растений. Получены доказательства прямого влияния брассиностероидов на клеточные деления. Так, в суспензионных культурах клеток БС-дефицитных мутантов Arabidopsis thaliana добавление брассиностероидов в питательную среду активизировало клеточные деления, что позволяло даже заменить цитокинин в процессе культивирования [7].

Так как рост растений тесно коррелирует с процессами деления клеток, то максимальное увеличение митотической активности наблюдается в период наибольшей стимуляции роста. Поэтому изучение влияния новых соединений из класса брассиностероидов – их конъюгатов с органическими кислотами – на митотическую активность клеток меристематических тканей открывает широкие возможности регулирования процессов роста и органогенеза растений в целом и в итоге – их продуктивности [6].

Целью данного исследования является оценка влияния брассиностероида 24-эпикастастерона и его конъюгатов с салициловой и индолилуксусной кислотами на митотическую активность клеток корневой меристемы ячменя обыкновенного и выявление оптимальных концентраций данных соединений для использования в качестве регуляторов роста.

Материал и методы

Для проведения исследований использовали семена ячменя обыкновенного (Hordeum vulgare L.) сорта Щедрый. Экспериментальные воздействия осуществляли путем замачивания семян в течение 5 ч в растворах 24-эпикастастерона (ЭК), 2-моносалицилата 24-эпикастастерона (S23) и тетраиндолилацетата 24-эпикастастерона (S31) в концентрациях 10^{-11} , 10^{-10} , 10^{-9} , 10^{-8} , 10^{-7} и 10^{-6} М. Исследуемые соединения были предоставлены лабораторией химии стероидов Института биоорганической химии НАН Беларуси.

Проращивание семян ячменя проводили согласно ГОСТ 12038-84 [8]. По достижении корешками длины 1,5–2 см, примерно через 2–3 суток после начала проращивания, их фиксировали в свежеприготовленном спиртуксусном (3:1) фиксаторе. Цитологические препараты корневой меристемы готовили общепринятым ацетоорсеиновым методом [9].

Анализ препаратов с целью определения митотической активности осуществляли на микроскопе МИКМЕД-5 при увеличении 15 х 40. В каждом варианте опыта анализировали не менее 2000 клеток с препаратов корешков 5–6 проростков. Для каждого корешка в трех полях зрения проводили подсчет числа клеток, находящихся на стадиях интерфазы (И), профазы (П), метафазы (М), анафазы (А) и телофазы (Т) соответственно. В качестве показателя митотической активности клеток использовали митотический индекс (МИ), измеряемый в промилле (‰), который рассчитывали по следующей формуле (1) [9]:

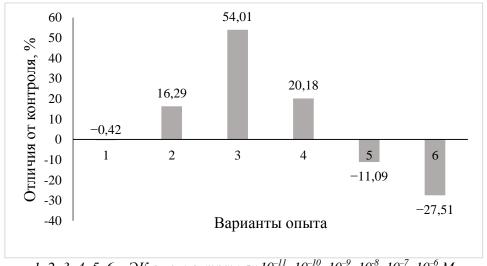
$$MH = \frac{\Pi + M + A + T}{\Pi + M + A + T + H} \cdot 1000. \tag{1}$$

Статистическую обработку проводили с использованием программы Microsoft Excel. Определяли средние значения митотического индекса и стандартные ошибки средних. Для оценки достоверности различий использовали t-критерий Стьюдента [10].

Результаты и их обсуждение

Данные о влиянии 24-эпикастастерона (ЭК) на величину митотического индекса (МИ) клеток корневой меристемы ячменя приведены в таблице 1 и на рисунке 1.

Как видно из приведенных данных, МИ в контроле составляет 86,36 ‰. ЭК в концентрации 10^{-11} М практически не оказывает влияния на данный показатель: наблюдаемое снижение МИ на 0,42 % по сравнению с контролем не является существенным. При действии ЭК в концентрациях 10^{-10} , 10^{-9} и 10^{-8} М наблюдается увеличение МИ до значений 100,43; 133,01 и 103,79 ‰ соответственно, отличия от контроля составляют 16,19; 54,01 и 20,18 %. Для концентраций ЭК 10^{-9} и 10^{-8} М такое увеличение является достоверным (при P < 0,05 и 0,001). Более высокие концентрации ЭК, напротив, вызывают снижение митотического индекса с 86,36 ‰ в контроле до 76,79 ‰ при концентрации 10^{-7} М и 62,61 ‰ при концентрации 10^{-6} М (отличия от контроля достоверны при P < 0,05 и 0,001 соответственно). При этих концентрациях МИ снижается на 11,09 и 27,51 % по отношению к контролю.


Таблица 1 — Влияние 24-эпикастастерона (ЭК) на митотическую активность клеток корневой меристемы ячменя обыкновенного (*Hordeum vulgare* L.)

Вариант опыта	Митотический индекс (МИ)	
	% 0	% к контролю
Контроль	$86,36 \pm 2,73$	100,0
ЭК, 10 ⁻¹¹ М	$86,0 \pm 5,58$	99,58

ЭК, 10 ⁻¹⁰ М	$100,43 \pm 6,75$	116,29
ЭК, 10 ⁻⁹ М	133,01 ± 7,15***	154,01
ЭК, 10 ⁻⁸ М	$103,79 \pm 6,97*$	120,18
ЭК, 10 ⁻⁷ М	76,79 ± 3,74*	88,91
ЭК, 10 ⁻⁶ М	62,61 ± 4,45***	72,49

Окончание таблицы 1

Примечание — * — достоверно при $P \le 0.05$; *** — при $P \le 0.001$.

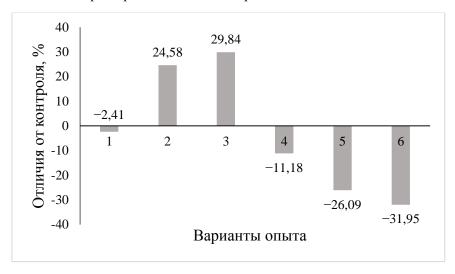
1, 2, 3, 4, 5, 6 - ЭК в концентрациях $10^{-11}, 10^{-10}, 10^{-9}, 10^{-8}, 10^{-7}, 10^{-6}$ М.

Рисунок 1 — Влияние 24-эпикастастерона (ЭК) на митотический индекс клеток корневой меристемы ячменя обыкновенного (отличия от контроля, %)

Таким образом, ЭК в минимальной концентрации $10^{-11}\,\mathrm{M}$ не оказывает влияния на митотическую активность клеток корневой меристемы ячменя, в концентрациях $10^{-10}, 10^{-9}\,\mathrm{M}$ повышает ее, а в концентрациях $10^{-7}\,\mathrm{u}\ 10^{-6}\,\mathrm{M}$ приводит к снижению исследуемого показателя. Наибольшее увеличение митотической активности наблюдается при действии ЭК в концентрации $10^{-9}\,\mathrm{M}$.

Данные о влиянии 2-моносалицилата 24-эпикастастерона (S23) на величину митотического индекса (МИ) клеток корневой меристемы ячменя приведены в таблице 2 и на рисунке 2.

Из приведенных данных следует, что, как и в случае с ЭК, S23 в концентрации 10^{-11} М не оказывает существенного влияния на митотическую активность клеток корневой меристемы ячменя. Митотический индекс при данной концентрации снижается с 86,36 % в контроле до 84,28 % в опытном варианте, что меньше контрольного значения всего на 2,41 %. При действии S23 в концентрациях 10^{-10} и 10^{-9} М наблюдается увеличение МИ с 86,36 % в контроле до 107,59 и 112,13 % в опытных вариантах, что превышает контрольное значение на 24,58 и 29,84 % соответственно. При этом эффект влияния S23 на митотическую активность является достоверным (при P < 0,01 и 0,05 для концентраций 10^{-10} и 10^{-9} М). S23 в более низких концентрациях (10^{-8} , 10^{-7} и 10^{-6} М) вызывает снижение митотического индекса до значений 76,71, 63,83 и 58,77 % (в контроле 86,36 %). По отношению к контролю МИ при этих концентрациях снижается на 11,8; 26,09 и 31,95 %. Для концентраций S23 10^{-7} и 10^{-6} М такое снижение является высокодостоверным (P < 0,001).


Таким образом, S23 в минимальной концентрации 10^{-11} M не оказывает существенного влияния на митотическую активность клеток корневой меристемы ячменя, в концентрациях 10^{-10} , 10^{-9} M повышает ее, а в концентрациях 10^{-8} , 10^{-7} и 10^{-6} M приводит к сни-

жению исследуемого показателя. С увеличением концентрации S23 от 10^{-8} до 10^{-6} М ингибирующий эффект его действия усиливается. Наибольшее увеличение митотической активности наблюдается при действии S23 в концентрации 10^{-9} М.

Таблица 2 — Влияние 2-моносалицилата 24-эпикастастерона (S23) на митотическую активность клеток корневой меристемы ячменя обыкновенного (*Hordeum vulgare* L.)

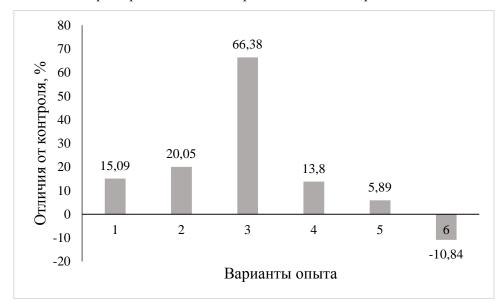
Вариант опыта	Митотический индекс (МИ)	
	‰	% к контролю
Контроль	$86,36 \pm 2,73$	100,0
S23, 10 ⁻¹¹ M	$84,28 \pm 3,91$	97,59
S23, 10 ⁻¹⁰ M	$107,59 \pm 5,1*$	124,58
S23, 10 ⁻⁹ M	$112,13 \pm 9,38*$	129,84
S23, 10 ⁻⁸ M	$76,71 \pm 5,9$	88,82
S23, 10 ⁻⁷ M	63,83 ± 3,35***	73,91
S23, 10 ⁻⁶ M	58,77 ± 5,35***	68,05

Примечание — * — достоверно при $P \le 0.05$; *** — при $P \le 0.001$.

1, 2, 3, 4, 5, 6 - S23 в концентрациях $10^{-11}, 10^{-10}, 10^{-9}, 10^{-8}, 10^{-7}, 10^{-6} M$.

Рисунок 2 – Влияние 2-моносалицилата 24-эпикастастерона (S23) на митотический индекс клеток корневой меристемы ячменя обыкновенного (отличия от контроля, %)

Данные о влиянии тетраиндолилацетата 24-эпикастастерона (S31) на величину митотического индекса (МИ) клеток корневой меристемы ячменя приведены в таблице 3 и на рисунке 3.


Из приведенных данных следует, что обработка семян растворами S31 во всех исследуемых концентрациях, за исключением самой высокой (10^{-6} M), приводит к увеличению значений МИ с 86,36 ‰ в контроле до 99,4; 103,68; 143,69; 98,28 и 91,45 ‰ при концентрациях 10^{-11} , 10^{-10} , 10^{-9} , 10^{-8} и 10^{-7} М соответственно. Такое увеличение является достоверным для концентраций S31 в диапазоне 10^{-11} – 10^{-8} М.

Наибольший эффект увеличения митотической активности наблюдается при действии S31 в концентрации 10^{-9} M: значение МИ при этой концентрации превышает контрольное значение на 66,38 %. Снижение МИ при действии S31 в концентрации 10^{-6} M не является достоверным, отличия от контроля составляют 10,84 %.

aktribilocib katerok	корпсвои меристемы и-имени ооыкнове	mioro (moraeum vargare L.)	
Вариант опыта	Митотический индекс (МИ)		
	‰	% к контролю	
Контроль	$86,36 \pm 2,73$	100,0	
S31, 10 ⁻¹¹ M	99,40 ± 4,69*	115,09	
S31, 10 ⁻¹⁰ M	103,68 ± 4,14**	120,05	
S31, 10 ⁻⁹ M	143,69 ± 4,99***	166,38	
S31, 10 ⁻⁸ M	98,28 ± 4,89*	113,8	
S31, 10 ⁻⁷ M	$91,45 \pm 6,27$	105,89	
S31, 10 ⁻⁶ M	77.0 ± 5.62	89,16	

Таблица 3 — Влияние тетраиндолилацетата 24-эпикастастерона (S31) на митотическую активность клеток корневой меристемы ячменя обыкновенного (*Hordeum vulgare* L.)

Примечание — * — достоверно при $P \le 0.05$; ** — при $P \le 0.01$; *** — при $P \le 0.001$.

1, 2, 3, 4, 5, 6 - S31 в кониентрациях $10^{-11}, 10^{-10}, 10^{-9}, 10^{-8}, 10^{-7}, 10^{-6}$ М.

Рисунок 3 — Влияние тетраиндолилацетата 24-эпикастастерона (S31) на митотический индекс клеток корневой меристемы ячменя обыкновенного (отличия от контроля, %)

Таким образом, в отличие от ЭК и S23, S31 уже в самой минимальной концентрации $(10^{-11}\,\mathrm{M})$ приводит к достоверному увеличению МИ. В целом к увеличению митотической активности клеток корневой меристемы ячменя приводит действие всех исследуемых концентраций S31, за исключением самой высокой $(10^{-6}\,\mathrm{M})$. Максимальный эффект повышения митотической активности наблюдается при действии S31 в концентрации $10^{-9}\,\mathrm{M}$.

Заключение

Проведено исследование влияния 24-эпикастастерона (ЭК) и его конъюгатов с биологически значимыми органическими кислотами (салициловой и индолилуксусной) — 2-моносалицилата 24-эпикастастерона (S23) и тетраиндолилацетата 24-эпикастастерона (S31) — на митотическую активность клеток корневой меристемы ячменя обыкновенного (*Hordeum vulgare* L.). Установлено, что обработка семян растворами ЭК и S23 в концентрации $10^{-11}\,\mathrm{M}$ не оказывает существенного влияния на исследуемый показатель. При действии данных соединений в концентрациях $10^{-10}\,\mathrm{u}\ 10^{-9}\,\mathrm{M}$ наблюдается увеличение митотической активности, для

ЭК такое увеличение происходит и при концентрации 10^{-8} М. ЭК и S23 в более высоких концентрациях, напротив, приводят к снижению митотической активности клеток корневой меристемы: такое снижение наблюдается при действии ЭК в концентрациях 10^{-7} и 10^{-6} М, а S23 – в концентрациях 10^{-8} , 10^{-7} и 10^{-6} М. S31, в отличие от ЭК и S23, обладает более выраженным стимулирующим клеточные деления действием. Во всех исследуемых концентрациях, за исключением самой высокой (10^{-6} М), S31 вызывает увеличение митотической активности клеток корневой меристемы. Наибольший стимулирующий эффект для всех исследуемых соединений наблюдается при концентрации 10^{-9} М. Эта концентрация может быть рекомендована для практического использования, как обладающая наиболее выраженным ростстимулирующим действием.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Князева, Т. В. Регуляторы роста в Краснодарском крае / Т. В. Князева. Краснодар: ЭДВИ, 2013. 128 с.
- 2. Хрипач, В. А. Брассиностероиды / В. А. Хрипач, Ф. А. Лахвич, В. Н. Жабинский. Минск : Наука и техника, 1993. 287 с.
- 3. Биологическая активность брассиностероидов и стероидных гликозидов / С. Э. Кароза [и др.]; под общ. ред. С. Э. Карозы; Брест. гос. ун-т им. А. С. Пушкина. Брест : БрГУ, 2019. 261 с.
- 4. Дмитриева, С. А. Митотический индекс меристематических клеток и рост корней гороха *Pisum sativum* при действии модуляторов инозитольного цикла / С. А. Дмитриева, Ф. В. Минибаева, Л. Х. Гордон / Цитология. -2006. Т. 48. № 6. С. 475–479.
- 5. Каташов, Д. А. Влияние фитогормонов и селената натрия на митотическую активность апикальных меристем корней проростков рапса ($Brassica\ napus$) / Д. А. Каташов, В. Н. Хрянин // Известия высших учебных заведений. Поволжский регион. Естественные науки. -2013.- N 2(2).- C.49-54.
- 6. Изучение суточной периодичности митозов в клетках меристем проростков луковицы лука *Allium cepa* L. / C. A. Беждугова [и др.] // Международный журнал прикладных и фундаментальных исследований. 2018. № 3. С. 96–99.
- 7. Носов, А. В. Клеточный цикл растений: молекулярные события, регуляция внешними факторами и фитогормонами / А. В. Носов, А. А. Фоменков // Физиология растений. 2023. Т. 70. N2 4. С. 433–448.
- 8. Семена сельскохозяйственных культур. Методы определения всхожести. Межгосударственный стандарт: ГОСТ 12038–84. Введ. 01.07.86. М. : Стандартинформ, 2011.-29 с.
- 9. Паушева, 3. П. Практикум по цитологии растений / 3. П. Паушева. М. : Агропромиздат, 1988. 271 с.
- 10. Рокицкий, П. Ф. Биологическая статистика / П. Ф. Рокицкий. Минск : Вышейшая школа, 1973. 320 с.

REFERENCES

- 1. Knjazeva, T. V. Reguljatory rosta v Krasnodarskom kra
e / T. V. Knjazeva. Krasnodar: EDVI, 2013. 128 s.
- 2. Hripach, V. A. Brassinosteroidy / V. A. Hripach, F. A. Lahvich, V. N. Zhabinskij. Minsk: Nauka i tehnika, 1993. 287 s.

- 3. Biologicheskaja aktivnosť brassinosteroidov i steroidnyh glikozidov / S. Je. Karoza [i dr.]; pod obshh. red. S. Je. Karozy; Brest. gos. un-t im. A. S. Pushkina. – Brest : BrGU, 2019. – 261 s.
- 4. Dmitrieva, S. A. Mitoticheskij indeks meristematicheskih kletok i rost kornej goroha Pisum sativum pri dejstvii moduljatorov inozitol'nogo cikla / S. A. Dmitrieva, F. V. Minibaeva, L. H. Gordon / Citologija. – 2006. – T. 48. – № 6. – S. 475–479.
- 5. Katashov, D. A. Vlijanie fitogormonov i selenata natrija na mitoticheskuju aktivnost' apikal'nyh meristem kornej prorostkov rapsa (Brassica napus) / D. A. Katashov, V. N. Hrjanin // Izvestija vysshih uchebnyh zavedenij. Povolzhskij region. Estestvennye nauki. – 2013. – № 2(2). – S. 49–54.
- 6. Izuchenie sutochnoj periodichnosti mitozov v kletkah meristem prorostkov lukovicy luka Allium cepa L. / S.A. Bezhdugova [i dr.] // Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij. – 2018. – No 3. – S. 96-99.
- 7. Nosov, A. V. Kletochnyj cikl rastenij: molekuljarnye sobytija, reguljacija vneshnimi faktorami i fitogormonami / A. V. Nosov, A. A. Fomenkov // Fiziologija rastenij. – 2023. – T. $70. - N_{\circ} 4. - S. 433 - 448.$
- 8. Semena sel'skohozjajstvennyh kul'tur. Metody opredelenija vshozhesti. Mezhgosudarstvennyj standart: GOST 12038–84. – Vved. 01.07.86. – M.: Standartinform, 2011. - 29 s.
- 9. Pausheva, Z. P. Praktikum po citologii rastenij / Z. P. Pausheva. M. : Agropromizdat, 1988. – 271 s.
- 10. Rokickij, P. F. Biologicheskaja statistika / P. F. Rokickij. Minsk : Vyshejshaja shkola, 1973. – 320 s.

Рукапіс паступіў у рэдакцыю 17.03.2025